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WE ALWAYS STRIVE TO BE AT THE 
FOREFRONT OF CHANGE 
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SAAB WORLDWIDE 

Employees 2009 
Sweden

 10,916 South Africa
 1,146 Australia
 378 USA                
 262 Great Britain
 122 Denmark
 83 Finland
 73 Switzerland
 33 Norway
 45  Other
 101  Total 

13,159 
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Business portfolio: 
!   Support weapons 
!   Missiles 
!   Torpedoes and ROV (Remotely 

Operated Vehicle) and AUV 
(Autonomous Underwater Vehicle) 

!   Signature Management Systems 
!   Headed by Tomas Samuelsson 

          Jan-Dec     Jan-Dec      Jan-Dec 
MSEK  2009  2008          2007 
Order intake  3,133  3,743          3,870 
Order backlog  6,980  8,453          8,882 
Sales  4,580  4,281         3,812 
EBITDA  466  497      494 
EBITDA margin, %  10.2  11.6      13.0 
Operating income  269  112       406 
Operating margin, %  5.9  2.6       10.7 
Adj. Oper. Margin, %  9.8  8.5     9.5  
(excl. non-recurring items)   

Operating cash flow  369  830        -822 
Number of employees  1,739  1,805        1,849 
Split sales in Sweden and  14/86  19/81        25/75 
markets outside of Sweden   

DYNAMICS 

proforma financials 
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COMPLETE MISSILES SOLUTIONS 

!   Develops advanced missile systems for the Swedish 
Defence Forces and other national defence forces 

!   Participates in international projects 
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EXECUTABLE UML AND MDA 
!   Executable UML is a profile (subset) of UML 2.0, including an abstract 

action language, adhering to the now standardised Action Semantics – 
defined by Stephen Mellor/Marc Balcer in 2002 

!   Enables development of Software and Hardware platform-independent 
specifications of the problem 

!   A standardised UML action language syntax is about to be defined – 
Executable UML is the basis for that via Stephen Mellor 

!   Supports the OMG Model-Driven Architecture (MDA) initiative 
•  PIM  – Platform-Independent Model - models the solution of a problem 
•  PSM  – Platform-Specific Model - models the details of the implementation 
•  Separation of Subject Matters  Abstraction & Reuse of models (not code) 
•  A Model Compiler weaves the models together, guided by marks, and translates  

them into an implementation at design-time not at specification-time 

!   xtUML is Mentor Graphics’ implementation of Executable UML 
!    Executable UML (xtUML) models ≡ Executable Specifications 

• can be executed and simulated (platform-independently) – without generating code 
• can be translated to one/several implementation(s) onto one/several specific software/

hardware platform(s) – without changing the models 
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MODEL COMPILERS 

!   Can be bought, tailored or developed from scratch 
•  depending on architectural requirements, e.g. required 

implementation language and target platform 

!   Main components 
•  architecture metamodels – expressed in xtUML, formalising 

architectural properties 
•  marks – translation control used to direct the translation to use 

different translation rules to inject design decisions during the 
translation, expressed in a rule-specification language (RSL) 

•  archetypes – translation rules and templates querying and 
transforming the information in the populated metamodels, 
expressed in RSL – Rule Specification Language 

•  mechanisms – library components expressed in the target source 
code language, e.g. event handler, timer  

!   BridgePoint supports full open code translation which 
means that the user have full control over the translation/
code generation process  Key property! 
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THE SPARK REQUIREMENT (I) 

!   Joint programme with a partner company  
•  development of embedded real-time software  
•  overall software is safety-related so the main parts of the software 

are implemented in SPARK Ada  
•  the partner company is a long-time user of SPARK 

!   Initial development approach 
•  Saab delivered non-safety-related software components in source 

code 
•  non-safety-related components temporally separated from the 

execution of the safety-related software 
•  specifying/modelling functionality in xtUML 
•  using Saab’s own Ada Model Compiler – generating full Ada 

•  slightly modified to generate SPARK-compliant interface layer to 
support overall SPARK analysis 

•  software successfully integrated and deployed by the partner in a 
number of builds and used in live trials 
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THE SPARK REQUIREMENT (II) 

!   Changed safety requirement 
•  temporal separation removed 
•  execution of non-safety related functions concurrently with the safety-related 

part of the application 
•  Saab’s code had to be implemented in SPARK Ada 

!   Revised development approach 
•  MDA process retained 
•  reuse existing xtUML models as-is 
•  develop a new software architecture in SPARK Ada 
•  formalise it into an xtUML model compiler based on SPARK 
•  reuse the Ada Model Compiler design as far as possible 
•  The Problem – Saab lacking sufficient in-depth knowledge of SPARK 
•  The Solution – form a joint architectural design team of MDA/xtUML/Model 

Compiler experts from Saab and SPARK experts from the partner 
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SPARK SOFTWARE ARCHITECTURE 
REQUIREMENTS  
!   Model-driven 

•  generate 100% complete SPARK code & annotations from xtUML models 

!   xtUML model compatibility 
•  no changes in existing xtUML application models 

!   xtUML feature support 
•  support all executable diagrams 

!   SPARK analysis support  
•  generate full code and annotations to support 

•  dataflow analysis  
•  information flow analysis 
•  proof of absence of run-time errors  

!   Annotation approach 
•  SPARK used to show generated code is structurally sound 
•  annotations relate to architectural elements rather than application functionality 

!   High-performance 
•  the code should be fast & small 

!   Integrity 
•  <10% remaining unsimplified Verification Conditions (VCs) from the Proof-of-Absence-of-RTE analysis 

!   Minimise requirement for SPARK knowledge and training  
•  simple mechanical process to compute annotations 

!   xtUML action language support 
•  try not to restrict the use of the action language 
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SPARK SOFTWARE ARCHITECTURE 
DESIGN APPROACH 
!   13 technical workshops – 4 days each, ~4 engineers 

•  Saab xtUML/Model compiler experts + partner SPARK experts 

!   Prototype xtUML application model covering most xtUML 
modelling constructs 
•  base for the software architecture design  

!   Prototype model manually implemented in SPARK 
•  including annotations 
•  explore design options and how best to annotate 
•  implementation patterns designed and redesigned for each xtUML 

model construct, integrated and tested together 
•  iterative development 
•  put through static SPARK analysis and dynamic tests 
•  static properties, like integrity, and dynamic properties, like execution 

performance were proven and fed back into next iteration 

!   Result: SPARK Ada software architecture suitable for 
automatic translation from xtUML 
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SPARK SOFTWARE ARCHITECTURE 
DESIGN NOTES – ADA CODE 
!   Extensive use of subtypes 

•  keep efficient underlying base type and to get good simplification of VCs 

!   Encountered conflicts between SPARK and the structuring of the design 
•  parent-child hierarchies  visibility within parent-child 
•  state refinement  hierarchies 

!   Constant look-up tables not always simplified by the SPARK Simplifier 
•  even when they cannot lead to runtime errors. 

!   Some preconditions were added in the annotations 
•  propagate the encountered issue to an appropriate higher level. But, as yet, no post 

conditions have been required. 

!   xtUML implicit declaration of local variables 
•  in the block scope where they are assigned, e.g. in the else-branch in an if-statement 
•  implicit block structure of action language needed to be reflected in the SPARK code 

!   Forced initialisation of action language variables  
•  unnecessary explicit local variable assignments whose only purpose is to declare a local 

variable had to be detected and removed by the model compiler 
•  SPARK lead to an efficiency gain due to removal of unnecessary initialisations 
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SPARK SOFTWARE ARCHITECTURE 
DESIGN NOTES – ANNOTATIONS 
!   Prototype annotations developed as in a manual 

development 
!   Prototype application designed to exploit xtUML 

constructs-of-interest 
•  all hand-coded 
•  used to assess efficiency and the proof of absence of run-time errors 
•  remaining unsimplified Verification Conditions  ~5% which was 

surprisingly good! 

!   Annotations were “computed” by keeping track of variable 
usage and was to be produced by the model compiler 
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SPARK ADA xtUML MODEL COMPILER 
DESIGN 
!   Prototyped software architecture formalised into a model compiler 
!   Reuse of architecture metamodels covering basic xtUML features 

and marking archetypes from the pre-cursing full Ada Model 
Compiler 

!   New metamodels for SPARK architecture specific features 
!   SPARK Ada additional semantics formalised into metamodels, e.g. 

•  global state 
•  data and information flow – dependency relationships between package state 

and subprogram parameters 

!   Ada semantics formalised into metamodels, e.g. 
•  package hierarchy 
•  with-dependencies 
•  package-subprogram relationship 
•  subprogram invocations 

!   Structural design decisions formalised into metamodels, e.g. 
•  one Ada package per class with operations in child-packages 
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SPARK ADA xtUML MODEL COMPILER 
DESIGN 
!   Translation rules 

•  translating xtUML application models into populated metamodels 
•  then into source code were 
•  formalised as new archetypes expressed in BridgePoint RSL (Rule-

Specification Language) 

!   Marks 
•  new marks to control the annotations of the generated subprograms 

that interfaces to realised components not modelled in xtUML 
(=code) 

•  the model compiler does otherwise not have any information about 
that external software 

!   Mechanisms 
•  none reused from the Ada Model Compiler 
•  only a couple of new mechanisms were implemented 
•  the rest are generated due to the lack of generics in SPARK 
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Metamodels Metamodel Instances 
xtUML Metamodel 
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SAMPLE xtUML MODEL 
Subsystem : Class Diagram 

Op1: Instance Operation Activity 

Class1 : Instance State Machine 

S2 : State Machine State Activity 
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OPERATION OP1 – GENERATED CODE & 
ANNOTATIONS 

package body 
Process_1.D1.Class1.IOp.Op1!
is!
  procedure Invoke!
    (Self : in Class1.Instance_Id)!
  is!
  begin!
    IAttr.Set_A1(Self.Index, 1);      !
    IAttr.Set_A2(Self.Index, 1.0);!
  end Invoke;!
end Process_1.D1.Class1.IOp.Op1;!

with Standard_Types, 
     D1_Domain, 
     Process_1.D1.Class1, 
     Process_1.D1.Class1.IAttr; 
--# inherit Process_1.D1.Class1.IAttr, 
--#         Standard_Types, 
--#         D1_Domain, 
--#         Process_1.D1.Class1; 

package Process_1.D1.Class1.IOp.Op1 
is 
  procedure Invoke 
    (Self : in Class1.Instance_Id); 
  --# global in out IAttr.State; 
  --# derives IAttr.State from *, 
  --#           Self; 
private 

end Process_1.D1.Class1.IOp.Op1; 
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with Process_1.D1.Class1, 
... 
--# inherit Process_1.D1.Class1.IAttr, 
... 
package Process_1.D1.Class1.ISA 
is 
  procedure S2_Action 
    (Self : in Class1.Instance_Id); 
  --# global in D1_Domain.R1.State; 
  --#        in out IAttr.State; 
  --#        in out IEH.State; 
  --# derives IAttr.State from *, 
  --#           Self & 
  --#         IEH.State from *, 
  --#           Self, 
  --#           D1_Domain.R1.State; 
... 
private 

end Process_1.D1.Class1.ISA; 

... 
package body Process_1.D1.Class1.ISA 
is 
  procedure S2_Action 
    (Self : in Class1.Instance_Id) 
  is 
    C2_Id_1 : Class2.Instance_Id; 
  begin 
    IOp.Op1.Invoke(Self); 
    C2_Id_1 :=     
      D1_Domain.R1.Class1_To_Class2. 

 Select_One(Self.Index); 
    IEH.Generate_No_Data 
      (Event    => Process_1.D1_Class2_E3, 
       Receiver => 
         Class2.I.Generalize(C2_Id_1), 
       Sender   => I.Generalize(Self)); 
  end S2_Action; 
... 
end Process_1.D1.Class1.ISA; 

ISA  = Instance state action package 
IOp  = Instance operation package 
IEH  = Event handler package 
IAttr  = Attribute data package 
I  = Instance data package 
R1  = Relationship R1 package 

STATE S2 – GENERATED CODE & ANNOTATIONS 
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CURRENT STATUS 

!   Computationally-demanding and state logic models have 
been generated, analysed and integrated 

!   The SPARK Ada model compiler has been used to 
generate code for the real system, as planned. The code 
has passed both static analysis and dynamic tests 

!   The model compiler is a mature SPARK software 
architecture 
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CONCLUSIONS AND OBSERVATIONS (I) 

!   Data and information flow analysis 
•  relatively easy to achieve; surprisingly useful 
•  information flow analysis – substantially harder but achieved 

!   SPARK warnings and errors fall into clear patterns 
•  easy to relate to the model 
•  anticipated real issue here – but no. 

!   Reflection at initial application of the model compiler 
•  xtUML modellers have the same types of issues as found in conventional SPARK development when 

specifying software based on a system/algorithm specification 
•  an early system-software dialogue was prompted – which is a key benefit of SPARK.  

!   Was SPARK just some additional bureaucracy?  
•  no, it added real value for zero effort – big win for both the system and software development – model 

update  SPARK code generated 
•  properties from the SPARK code could be easily fed back to the algorithm system developers 

!   Generate-analyse 
•  single combined step in the modelling process. 

!   RavenSPARK profile 
•  used because of the need to access Ada real-time 
•  analysis is not performed across partitions – each task is independent (so far) 
•  an xtUML component is mapped to a task. Several components can be executed by the same task. 

!   Execution performance 
•  the order found as semi-restricted Ada – at immature (but useful) state 
•  the team wants to explore possible improvements 
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CONCLUSIONS AND OBSERVATIONS (I) 
!   xtUML modelling 

•  encourages relatively more classes and relationships while using relatively small actions 
•  the design was driven to be efficient for such models 
•  made a good match with SPARK 

!   xtUML typing 
•  currently too weak 
•  Ada style typing would be beneficial 

!   Tension between flexibility for the modellers and the desire for tighter semantics 
!   Translating existing xtUML application models 

•  minimum effort 
•  mainly coping with the implicit declaration of local variables in the action language  gives “ineffective 

statement” errors in the SPARK analysis 
•  some of the assignments had to be substituted to a special value that the model compiler could identify 

!   Translation and code generation time 
•  an issue, mainly related to the information flow traversals 
•  probably largely resolved when migrating model compiler action translation to the latest metamodel-

based technique 

!   Effort to date 
•  ~1 man-year over a period of 2-3 years [4 engineers] 
•  performed part-time in parallel with project application 
•  development has been slotted into the main programme 
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