
APPLYING MODEL-DRIVEN 
ARCHITECTURE AND SPARK ADA 
A SPARK Ada Model Compiler for xtUML 

Erik Wedin, Senior Specialist – Software Systems Architecture 
Saab Bofors Dynamics AB, Sweden  
erik.wedin@saabgroup.com  
June 16th 2010 
15th International Conference on Reliable Software Technologies – Ada-Europe 2010  



© 2010 Saab Bofors Dynamics AB 

CONTENTS 

SAAB 
EXECUTABLE UML AND MDA 
THE SPARK REQUIREMENT 
SPARK SOFTWARE ARCHITECTURE 
SPARK ADA xtUML MODEL COMPILER 
xtUML MODEL AND GENERATED CODE EXAMPLE 
CURRENT STATUS 
CONCLUSIONS AND OBSERVATIONS  

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

WE ALWAYS STRIVE TO BE AT THE 
FOREFRONT OF CHANGE 

Bofors Järnbruk 
is founded 

Saab acquires 
Celsius Saab is founded 

Alfred Nobel  
acquire Bofors 

First order for 
Carl Gustaf 

First B17 
delivered 

Tunnan 
 – first flight 

First Gripen 
delivered 

Contract for 
Neuron 

StriC in  
operation 

Saab 2000  
ERIEYE™ 
AEW&C  

Saab Automobile 
independent 
company 

Saab acquires 
Grintek 

First laser 
simulator BT46 

First contract  
for NLAW 

Gripen Demo 
 – first flight 

Development 
of ARTHUR 

Development  
of fighter radar 

Development  
of GIRAFFE 

Sea Giraffe AMB 
 is launched  

Saab acquires 
EMW 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SAAB WORLDWIDE 

Employees 2009 
Sweden

 10,916 South Africa
 1,146 Australia
 378 USA                
 262 Great Britain
 122 Denmark
 83 Finland
 73 Switzerland
 33 Norway
 45  Other
 101  Total 

13,159 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB PAGE 5 

Business portfolio: 
!   Support weapons 
!   Missiles 
!   Torpedoes and ROV (Remotely 

Operated Vehicle) and AUV 
(Autonomous Underwater Vehicle) 

!   Signature Management Systems 
!   Headed by Tomas Samuelsson 

          Jan-Dec     Jan-Dec      Jan-Dec 
MSEK  2009  2008          2007 
Order intake  3,133  3,743          3,870 
Order backlog  6,980  8,453          8,882 
Sales  4,580  4,281         3,812 
EBITDA  466  497      494 
EBITDA margin, %  10.2  11.6      13.0 
Operating income  269  112       406 
Operating margin, %  5.9  2.6       10.7 
Adj. Oper. Margin, %  9.8  8.5     9.5  
(excl. non-recurring items)   

Operating cash flow  369  830        -822 
Number of employees  1,739  1,805        1,849 
Split sales in Sweden and  14/86  19/81        25/75 
markets outside of Sweden   

DYNAMICS 

proforma financials 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

COMPLETE MISSILES SOLUTIONS 

!   Develops advanced missile systems for the Swedish 
Defence Forces and other national defence forces 

!   Participates in international projects 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

EXECUTABLE UML AND MDA 
!   Executable UML is a profile (subset) of UML 2.0, including an abstract 

action language, adhering to the now standardised Action Semantics – 
defined by Stephen Mellor/Marc Balcer in 2002 

!   Enables development of Software and Hardware platform-independent 
specifications of the problem 

!   A standardised UML action language syntax is about to be defined – 
Executable UML is the basis for that via Stephen Mellor 

!   Supports the OMG Model-Driven Architecture (MDA) initiative 
•  PIM  – Platform-Independent Model - models the solution of a problem 
•  PSM  – Platform-Specific Model - models the details of the implementation 
•  Separation of Subject Matters  Abstraction & Reuse of models (not code) 
•  A Model Compiler weaves the models together, guided by marks, and translates  

them into an implementation at design-time not at specification-time 

!   xtUML is Mentor Graphics’ implementation of Executable UML 
!    Executable UML (xtUML) models ≡ Executable Specifications 

• can be executed and simulated (platform-independently) – without generating code 
• can be translated to one/several implementation(s) onto one/several specific software/

hardware platform(s) – without changing the models 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

MODEL COMPILERS 

!   Can be bought, tailored or developed from scratch 
•  depending on architectural requirements, e.g. required 

implementation language and target platform 

!   Main components 
•  architecture metamodels – expressed in xtUML, formalising 

architectural properties 
•  marks – translation control used to direct the translation to use 

different translation rules to inject design decisions during the 
translation, expressed in a rule-specification language (RSL) 

•  archetypes – translation rules and templates querying and 
transforming the information in the populated metamodels, 
expressed in RSL – Rule Specification Language 

•  mechanisms – library components expressed in the target source 
code language, e.g. event handler, timer  

!   BridgePoint supports full open code translation which 
means that the user have full control over the translation/
code generation process  Key property! 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

THE SPARK REQUIREMENT (I) 

!   Joint programme with a partner company  
•  development of embedded real-time software  
•  overall software is safety-related so the main parts of the software 

are implemented in SPARK Ada  
•  the partner company is a long-time user of SPARK 

!   Initial development approach 
•  Saab delivered non-safety-related software components in source 

code 
•  non-safety-related components temporally separated from the 

execution of the safety-related software 
•  specifying/modelling functionality in xtUML 
•  using Saab’s own Ada Model Compiler – generating full Ada 

•  slightly modified to generate SPARK-compliant interface layer to 
support overall SPARK analysis 

•  software successfully integrated and deployed by the partner in a 
number of builds and used in live trials 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

THE SPARK REQUIREMENT (II) 

!   Changed safety requirement 
•  temporal separation removed 
•  execution of non-safety related functions concurrently with the safety-related 

part of the application 
•  Saab’s code had to be implemented in SPARK Ada 

!   Revised development approach 
•  MDA process retained 
•  reuse existing xtUML models as-is 
•  develop a new software architecture in SPARK Ada 
•  formalise it into an xtUML model compiler based on SPARK 
•  reuse the Ada Model Compiler design as far as possible 
•  The Problem – Saab lacking sufficient in-depth knowledge of SPARK 
•  The Solution – form a joint architectural design team of MDA/xtUML/Model 

Compiler experts from Saab and SPARK experts from the partner 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK SOFTWARE ARCHITECTURE 
REQUIREMENTS  
!   Model-driven 

•  generate 100% complete SPARK code & annotations from xtUML models 

!   xtUML model compatibility 
•  no changes in existing xtUML application models 

!   xtUML feature support 
•  support all executable diagrams 

!   SPARK analysis support  
•  generate full code and annotations to support 

•  dataflow analysis  
•  information flow analysis 
•  proof of absence of run-time errors  

!   Annotation approach 
•  SPARK used to show generated code is structurally sound 
•  annotations relate to architectural elements rather than application functionality 

!   High-performance 
•  the code should be fast & small 

!   Integrity 
•  <10% remaining unsimplified Verification Conditions (VCs) from the Proof-of-Absence-of-RTE analysis 

!   Minimise requirement for SPARK knowledge and training  
•  simple mechanical process to compute annotations 

!   xtUML action language support 
•  try not to restrict the use of the action language 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK SOFTWARE ARCHITECTURE 
DESIGN APPROACH 
!   13 technical workshops – 4 days each, ~4 engineers 

•  Saab xtUML/Model compiler experts + partner SPARK experts 

!   Prototype xtUML application model covering most xtUML 
modelling constructs 
•  base for the software architecture design  

!   Prototype model manually implemented in SPARK 
•  including annotations 
•  explore design options and how best to annotate 
•  implementation patterns designed and redesigned for each xtUML 

model construct, integrated and tested together 
•  iterative development 
•  put through static SPARK analysis and dynamic tests 
•  static properties, like integrity, and dynamic properties, like execution 

performance were proven and fed back into next iteration 

!   Result: SPARK Ada software architecture suitable for 
automatic translation from xtUML 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK SOFTWARE ARCHITECTURE 
DESIGN NOTES – ADA CODE 
!   Extensive use of subtypes 

•  keep efficient underlying base type and to get good simplification of VCs 

!   Encountered conflicts between SPARK and the structuring of the design 
•  parent-child hierarchies  visibility within parent-child 
•  state refinement  hierarchies 

!   Constant look-up tables not always simplified by the SPARK Simplifier 
•  even when they cannot lead to runtime errors. 

!   Some preconditions were added in the annotations 
•  propagate the encountered issue to an appropriate higher level. But, as yet, no post 

conditions have been required. 

!   xtUML implicit declaration of local variables 
•  in the block scope where they are assigned, e.g. in the else-branch in an if-statement 
•  implicit block structure of action language needed to be reflected in the SPARK code 

!   Forced initialisation of action language variables  
•  unnecessary explicit local variable assignments whose only purpose is to declare a local 

variable had to be detected and removed by the model compiler 
•  SPARK lead to an efficiency gain due to removal of unnecessary initialisations 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK SOFTWARE ARCHITECTURE 
DESIGN NOTES – ANNOTATIONS 
!   Prototype annotations developed as in a manual 

development 
!   Prototype application designed to exploit xtUML 

constructs-of-interest 
•  all hand-coded 
•  used to assess efficiency and the proof of absence of run-time errors 
•  remaining unsimplified Verification Conditions  ~5% which was 

surprisingly good! 

!   Annotations were “computed” by keeping track of variable 
usage and was to be produced by the model compiler 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK ADA xtUML MODEL COMPILER 
DESIGN 
!   Prototyped software architecture formalised into a model compiler 
!   Reuse of architecture metamodels covering basic xtUML features 

and marking archetypes from the pre-cursing full Ada Model 
Compiler 

!   New metamodels for SPARK architecture specific features 
!   SPARK Ada additional semantics formalised into metamodels, e.g. 

•  global state 
•  data and information flow – dependency relationships between package state 

and subprogram parameters 

!   Ada semantics formalised into metamodels, e.g. 
•  package hierarchy 
•  with-dependencies 
•  package-subprogram relationship 
•  subprogram invocations 

!   Structural design decisions formalised into metamodels, e.g. 
•  one Ada package per class with operations in child-packages 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SPARK ADA xtUML MODEL COMPILER 
DESIGN 
!   Translation rules 

•  translating xtUML application models into populated metamodels 
•  then into source code were 
•  formalised as new archetypes expressed in BridgePoint RSL (Rule-

Specification Language) 

!   Marks 
•  new marks to control the annotations of the generated subprograms 

that interfaces to realised components not modelled in xtUML 
(=code) 

•  the model compiler does otherwise not have any information about 
that external software 

!   Mechanisms 
•  none reused from the Ada Model Compiler 
•  only a couple of new mechanisms were implemented 
•  the rest are generated due to the lack of generics in SPARK 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

Metamodels Metamodel Instances 
xtUML Metamodel 

SPARK OOD Architecture Metamodel 

SPARK Ada-
Subset 

Architecture 
Metamodel 

SPARK 
Annotation 
Metamodel 

SPARK Code SPARK Metamodel 

M
apping 

M
apping 

Application 
xtUML Model(s) 

Populated 
Architecture Model 

Transform
ation 

Transform
ation 

SPARK OOD 
Marking 

Metamodel 

Populated 
Marking 
Model 

Control 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

SAMPLE xtUML MODEL 
Subsystem : Class Diagram 

Op1: Instance Operation Activity 

Class1 : Instance State Machine 

S2 : State Machine State Activity 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

OPERATION OP1 – GENERATED CODE & 
ANNOTATIONS 

package body 
Process_1.D1.Class1.IOp.Op1!
is!
  procedure Invoke!
    (Self : in Class1.Instance_Id)!
  is!
  begin!
    IAttr.Set_A1(Self.Index, 1);      !
    IAttr.Set_A2(Self.Index, 1.0);!
  end Invoke;!
end Process_1.D1.Class1.IOp.Op1;!

with Standard_Types, 
     D1_Domain, 
     Process_1.D1.Class1, 
     Process_1.D1.Class1.IAttr; 
--# inherit Process_1.D1.Class1.IAttr, 
--#         Standard_Types, 
--#         D1_Domain, 
--#         Process_1.D1.Class1; 

package Process_1.D1.Class1.IOp.Op1 
is 
  procedure Invoke 
    (Self : in Class1.Instance_Id); 
  --# global in out IAttr.State; 
  --# derives IAttr.State from *, 
  --#           Self; 
private 

end Process_1.D1.Class1.IOp.Op1; 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

with Process_1.D1.Class1, 
... 
--# inherit Process_1.D1.Class1.IAttr, 
... 
package Process_1.D1.Class1.ISA 
is 
  procedure S2_Action 
    (Self : in Class1.Instance_Id); 
  --# global in D1_Domain.R1.State; 
  --#        in out IAttr.State; 
  --#        in out IEH.State; 
  --# derives IAttr.State from *, 
  --#           Self & 
  --#         IEH.State from *, 
  --#           Self, 
  --#           D1_Domain.R1.State; 
... 
private 

end Process_1.D1.Class1.ISA; 

... 
package body Process_1.D1.Class1.ISA 
is 
  procedure S2_Action 
    (Self : in Class1.Instance_Id) 
  is 
    C2_Id_1 : Class2.Instance_Id; 
  begin 
    IOp.Op1.Invoke(Self); 
    C2_Id_1 :=     
      D1_Domain.R1.Class1_To_Class2. 

 Select_One(Self.Index); 
    IEH.Generate_No_Data 
      (Event    => Process_1.D1_Class2_E3, 
       Receiver => 
         Class2.I.Generalize(C2_Id_1), 
       Sender   => I.Generalize(Self)); 
  end S2_Action; 
... 
end Process_1.D1.Class1.ISA; 

ISA  = Instance state action package 
IOp  = Instance operation package 
IEH  = Event handler package 
IAttr  = Attribute data package 
I  = Instance data package 
R1  = Relationship R1 package 

STATE S2 – GENERATED CODE & ANNOTATIONS 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

CURRENT STATUS 

!   Computationally-demanding and state logic models have 
been generated, analysed and integrated 

!   The SPARK Ada model compiler has been used to 
generate code for the real system, as planned. The code 
has passed both static analysis and dynamic tests 

!   The model compiler is a mature SPARK software 
architecture 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

CONCLUSIONS AND OBSERVATIONS (I) 

!   Data and information flow analysis 
•  relatively easy to achieve; surprisingly useful 
•  information flow analysis – substantially harder but achieved 

!   SPARK warnings and errors fall into clear patterns 
•  easy to relate to the model 
•  anticipated real issue here – but no. 

!   Reflection at initial application of the model compiler 
•  xtUML modellers have the same types of issues as found in conventional SPARK development when 

specifying software based on a system/algorithm specification 
•  an early system-software dialogue was prompted – which is a key benefit of SPARK.  

!   Was SPARK just some additional bureaucracy?  
•  no, it added real value for zero effort – big win for both the system and software development – model 

update  SPARK code generated 
•  properties from the SPARK code could be easily fed back to the algorithm system developers 

!   Generate-analyse 
•  single combined step in the modelling process. 

!   RavenSPARK profile 
•  used because of the need to access Ada real-time 
•  analysis is not performed across partitions – each task is independent (so far) 
•  an xtUML component is mapped to a task. Several components can be executed by the same task. 

!   Execution performance 
•  the order found as semi-restricted Ada – at immature (but useful) state 
•  the team wants to explore possible improvements 

COMPANY UNCLASSIFIED 



© 2010 Saab Bofors Dynamics AB 

CONCLUSIONS AND OBSERVATIONS (I) 
!   xtUML modelling 

•  encourages relatively more classes and relationships while using relatively small actions 
•  the design was driven to be efficient for such models 
•  made a good match with SPARK 

!   xtUML typing 
•  currently too weak 
•  Ada style typing would be beneficial 

!   Tension between flexibility for the modellers and the desire for tighter semantics 
!   Translating existing xtUML application models 

•  minimum effort 
•  mainly coping with the implicit declaration of local variables in the action language  gives “ineffective 

statement” errors in the SPARK analysis 
•  some of the assignments had to be substituted to a special value that the model compiler could identify 

!   Translation and code generation time 
•  an issue, mainly related to the information flow traversals 
•  probably largely resolved when migrating model compiler action translation to the latest metamodel-

based technique 

!   Effort to date 
•  ~1 man-year over a period of 2-3 years [4 engineers] 
•  performed part-time in parallel with project application 
•  development has been slotted into the main programme 

COMPANY UNCLASSIFIED 




