
  

Reusable Work Seeking Parallel 
Framework for Ada 2005 

(*and Beyond)

By Brad Moore



  

Presentation Outline
! Describe generic classification

" Iterative vs Recursive
" Work Sharing vs Work Seeking
" Reducing vs Non-Reducing

! Describe Work Sharing, Work Stealing, Work Seeking
! Iterative & Recursive Parallelism Examples
! Pragma ideas for further simplification
! Lessons Learned, Affinity, Worker Count, Work Budget
! Briefly discuss how generics could be applied to Battlefield 

Spectrum Management
! Performance Results



  

Parallel Generics Implemented
Iterative 

Parallelism
Recursive 
Parallelism

Work Sharing

(without load 
balancing)

Non-Reducing ! !

Reducing Elementary ! !

 Composite ! !

Work Seeking

(load 
balancing)

Non-Reducing ! !

Reducing Elementary ! !

Composite ! !



  

Iterative usage
! Speeding up loops

" Best applied to ”for” loops, where number of 
iterations known before starting parallelism

!  Example usage
" Solving matrices, partial differential equations
" Determining if a number is prime
" Processing a large number of objects
" Processing a small number of ”big” objects



  

Recursive usage
! Processing recursive (tree) data structures

" Binary trees, Red/Black Trees
" N-way trees

! Recursive algorithms (e.g. Fibonacci)
Fibonacci (X) 

= Fibonacci (X – 1) + Fibonacci (X - 2);



  

Workers, Work defined
! In scheduling world, 

" workers are processors, 
" work is threads/processes.

! For these generics in the application domain,
" workers are tasks 
" work is subprograms

!  or sequential fragments of code that can be 
wrapped in a subprogram



  

Work Sharing
! When scheduling new work attempt to give to 

under-utilized worker.
! Conceptually, a centralized work queue shared 

between workers

W X Y Z

Work QueueMaster

Workers



  

Work Sharing Optimizations used in 
Parallelism Generics

! Simple Divide and Conquer
! Define work such that;

             Work Item Count = Worker Count
" i.e., no load-balancing takes place
" Well suited if load balancing not needed

! Centralized queue ”optimized” out
! Optimal performance for evenly distributed loads



  

Work Stealing
! Idle workers try to ”steal” work from busy 

workers.
! Idle worker typically search for work randomly 

from busy workers.
! Load balancing managed by idle workers.
! Ruled out as an approach for various reasons

" Work Seeking seen as better choice



  

Work Sharing Issues
! Pro

" Optimal for evenly distributed loads, with minimal 
overhead

! Con
" Unevenly distributed work can lead to poor 

processor utilization. (Idle processors waiting for 
other processors with larger work that could be 
further broken up)



  

Work Stealing Issues
! Pro

" Optimal processor utilization assuming uneven 
work load distribution.

! Con
" Compartmentalization structure likely introduces 

overhead
" More overhead than work sharing for evenly 

distributed loads



  

A Work Stealing Approach
(Ruled out)

! Benchmark: Sequential code running on single 
processor.

! Ideally algorithm should show single worker 
executes as fast as sequential code.

! An approach with minimal interference on busy 
workers has idle task suspend busy worker, steal 
work, then resume worker.

" Most general purpose OS's don't allow one thread 
to suspend/resume another.

" RT OS may allow.



  

Work Stealing Approaches (Cont)
! Another approach using deques. Idle tasks steal 

work from the tail of deque, busy workers extract 
work from the head of deque.

" Approach used by Cilk++
! Compartmentalizing work to insert on deque 

introduces overhead to process deque.



  

Load Balancing Approach Taken: 
Work Seeking

! Compromise between Work Sharing and Work 
Stealing models.

! Idle tasks request (seek) work.
! Busy tasks check for existence of work seekers, 

and offer work.
! Low distributed overhead involves simple check 

of an atomic Boolean variable
! Direct handoff eliminates need for random 

seaching for work



  

Work Seeking (cont)
! No need to randomly search for busy worker

" Busy worker hands off work directly to idle 
worker requesting work.

! Minimal contention, can outperforms barrier 
approach using POSIX barrier calls.

! Generic implementation does not use heap 
allocation. Everything is stack based.



  

Work Sharing vs Work Seeking
! Choice depends on whether load balancing is 

needed.

Evenly distributed loads Unevenly distributed loads
Work Sharing Good Poor processor utilization, 

high idle times
Work Seeking Load balancing 

overhead not needed
Good





  

Example Problem: Sum of integers
Sum : Integer := 0;
for I in 1 .. 1_000_000_000 loop
   Sum := Sum + I;
end loop

! Divide and Conquor between available processors. 
! Assuming two processors mapped to two tasks, 

" T1 gets 1 .. 500_000_000
" T2 gets 500_000_001 .. 1_000_000_000

! Issue: Race condition updating Sum
! Each task gets own copy of global Sum

" Final result involves reducing copies of Sum



  

Sum of Integers: (cont)
! Generally, we can add parallelism to process 

globals if reducing operation is associative.
" e.g. Addition, Appending to list, Min/Max, 

multiplication?
! Order of operations is preserved.

" e.g. Appending integers to list results in sorted list 
from 1 .. 1_000_000_000, 

" same result as sequential code



  

Sum of integers (cont)
task type Worker is
   entry Initialize (Start_Index, Finish_Index : Integer);
   entry Total (Result : out Integer);
end Worker;
task body Worker is
   Start, Finish : Integer;
   Sum : Integer := 0;
begin      
   accept Initialize (Start_Index, Finish_Index : Integer) do
      Start := Start_Index;
      Finish := Finish_Index;
   end Initialize;
      
   for I in Start .. Finish loop
      Sum := Sum + I;
   end loop;
      
   accept Total (Result : out Integer) do
      Result := Sum;
   end Total;
end Worker;

Number_Of_Processors : constant := 2;
Workers : array (1 .. Number_Of_Processors) of Worker;
Results : array (1 .. Number_Of_Processors) of Integer;
Overall_Result : Integer;
begin
   Workers (1).Initialize (1, 500_000_000);
   Workers (2).Initialize (500_000_001, 1_000_000_000);
   Workers (1).Total (Results (1));
   Workers (2).Total (Results (2));
   Overall_Result := Results (1) + Results (2);

 One can write custom solution in 
Ada but...
- Too much effort, unless absolutely 
needed.
 (Even worse if generalized for any  number 
of processors).

- More likely to have bugs than 
simple sequential solution
- Programmers likely wouldn't bother
- Lost Parallelism



  

Goal
! To facilitate parallelism in loops and recursion.
! Ada's strong nesting shines (Insertion at original loop site).

Sum : Integer;   
declare
   procedure Iteration (Start, Finish : Positive; Sum : in out Integer) is
   begin
      for I in Start .. Finish loop – Based on original sequential code
         Sum := Sum + I;
      end loop;
   end Iteration;
begin
   Integer_Addition_Reducer  – Work Sharing Generic Instantiation
     (From    => 1,
      To      => 1_000_000_000,
      Process => Iteration'Access,
      Item    => Sum);
end;



  

Work Sharing Generic Instantiation
! Common Reducers may be pre-instantiated and 

reused/shared

with Parallel.Iterate_And_Reduce;
procedure Integer_Addition_Reducer is new
   Parallel.Iterate_And_Reduce
     (Iteration_Index_Type => Positive,
      Element_Type => Integer,
      Reducer => "+",
      Identity_Value => 0);



  

Ultimate Goal
! Even better if we can provide syntactic sugar
! The pragma would expand to the code as shown 

previously

Sum : Integer := 0;
for I in 1 .. 1_000_000_000 loop
   Sum := Sum + I;
end loop
pragma Parallel_Loop   – Idea for a new pragma 
  (Load_Balancing => False,  – = Work Sharing, not Work Seeking
   Reducer => ”+”,     – Monoid Reducing function
   Identity => 0,      – Monoid Identity Value
   Result => Sum);     – Global State



  

Work Seeking Version
Sum : Integer;   
declare
   procedure Iteration
     (Start                       : Integer;
      Finish                      : in out Integer;
      Others_Seeking_Work         : not null access Parallel.Work_Seeking;
      Sum                         : in out Integer) is
   begin
      for I in Start .. Finish loop         – Based on original sequential code
         Sum := Sum + I;
         if Others_Seeking_Work.all then       – Atomic Boolean check
            Others_Seeking_Work.all := False;  – Stop other workers from checking
            Finish := I;                       – Tell generic how far we got
            exit;                       – Generic will re-invoke us with less work
         end if;
      end loop;
   end Iteration;
begin
   Work_Seeking_Integer_Addition_Reducer    – Pre-instantiated generic
     (From    => 1,
      To      => 1_000_000_000,
      Process => Iteration'Access,
      Item    => Sum);
end;



  

Ultimate Work Seeking Version
! Note almost identical to work sharing version

Sum : Integer := 0;
for I in 1 .. 1_000_000_000 loop
   Sum := Sum + I;
end loop

pragma Parallel_Loop   – Idea for a new pragma 
  (Load_Balancing => True,  – Work Seeking, not Work Sharing
   Reducer => ”+”,     – Monoid Reducing function
   Identity => 0,      – Monoid Identity Value
   Result => Sum);     – Global State



  

Parallel Recursion
! Idea is to allow workers to recurse independently 

of each other.
" While one worker is recursing upwards, others 

may still be recursing down the tree.
! Unlike loop iteration, total iteration count not 

typically known.
! Number of ”splits” at given node likely is known 

however.



  

Possible Recursion Syntax Example
! Similarly for parallel recursion...

procedure Iterate (Container : Tree;
                               Process   : not null access procedure (Position : Cursor)) 
is
      procedure Span_Tree (Node : Node_Access) is
      begin
           if Node = null then
              return;
           end if;

           Span_Tree (Node.Left);
           Process (Cursor'(Container'Unrestricted_Access, Node));
           Span_Tree (Node.Right);
      end Span_Tree;
      pragma Parallel_Procedure (Load_Balancing => True, Splits => 2);
begin  – Iterate
     Span_Tree (Container.Root);
end Iterate;



  

Lessons Learned:  Affinity
! Affinity: locking tasks to specific processors
! Thought extra control would improve performance
! Seldom provided benefit, and only if;

iterations mod processors = 0
or

processor count insignifcant compared to iteration 
count

! Otherwise, better left to scheduler to decide
" Could consider  sophisticated dynamic algorithm



  

Affinity
! Assume 2 processors, 3 iterations
! With workers = 2. W1 <= I1  W2 <= I2-I3

" W1 Finishes I1 when W2 starts I3
! Total time = 2 * Iteration time
! Idle time = 1 * iterator time

! With workers = 3. p1 <= W1, p2 <= W2-W3
" P1 finishes W1 when p2 is half-way through W2 & 

W3
! Total time = (1 + (0.5 + 0.5))  Iteration time
! Idle time = 1 * iterator time



  

Without Affinity
! 3 workers, 3 iterations
! OS scheduler migrates workers between 

processors as needed to provide fair sharing of 
processors

! All 3 workers complete at the same time.
" Total time = 3 * iteration time / processor count
" Idle time = 0
" 1.5t beats 2t



  

Lessons Learned: 
Choosing Worker Count

! If iterations count significant relative to processor 
count...

" If iteration count >= processor count
   Select worker count that is the smallest factor of 

the iteration count that is greater or equal to the 
number of processors

" else
   Use Iteration count

! else use processor count



  

Iterative Worker Count Example
! e.g. for 4 processor target

Iteration 
Count

Recommended 
Worker Count

3 3
4 4
5 5
6 6
7 7
8 4
9 9
10 5
11 11
12 4



  

Work Budget
! Number of times a worker task may seek work

" 1 approximates work sharing
" -1 (unlimited)

! Thought diminishing returns would mean need to 
tune value for optimum performance

! Generally found that unlimited work budget 
provides optimum results for work seeking.



  

Subcontractor count
! For recursion, since iteration count is unknown
! = Number of sub workers (subcontractors) a 

worker is allowed to ”hire”
! Used for initial loading of workers.
! Attempts to evenly distribute workers among 

available processors. Better to assign as soon as 
possible in the recursion



  

Possibility for industrial usage 
Battlefield Spectrum Management

! Algorithm to assign radio frequencies to emitters.
! Used by signal planners in military to plan 

communications deployment
! Limited Frequencies
! Interference
! Numerical analysis can take time
! Looping through emitters suggest these generics could 

improve performance.



  

To Do
! Port to RTOS

" MaRTE specifically
" Add work stealing generics with suspend/resume 

semantics
" Compare work stealing against work seeking, 

work sharing.
! Follow up on interest for syntactic sugar

" AI for post Ada 2012?



  

Performance Results
! Single worker performs comparably to sequential 

code
! Ada generics significantly outperform similar 

examples written in Cilk++
! Ada generics significantly outperform non-generic 

Ada code using POSIX barriers to manage splits 
and joins for matrix solving, partial diff. equations.



  

Conclusions
! Parallel Generics encourage increased use of 

parallelism in applications.
! Further simplification possible

" Syntactic sugar pragmas
" Extra compiler checks to validate parallel usage

! Default affinity may be good enough here
! Programmer needs to indicate preference for load 

balancing. Compiler likely can't make decision.



  

Questions?


