
An Introduction to ParaSail:
Parallel Specification and
Implementation Language

S. Tucker Taft
AdaEurope, Valencia, June 2010

© 2010 SofCheck, Inc.

2

Outline of Presentation

 Why design a new language for safety-critical systems
from scratch?

 What makes ParaSail interesting?

 Parallelism in ParaSail

 Annotations in ParaSail

 More examples of ParaSail

 How does ParaSail compare?

 Open issues in ParaSail

© 2010 SofCheck, Inc.

3

Why Design A New Language for
Safety-Critical Systems?

80+% of safety-critical systems are developed in
C and C++, two of the least safe languages
invented in the last 40 years

SPARK needs some real competition
Every 32 years you should start from scratch
In 10 years, many chips will have 64+ cores
If we donʼt, someone else will
Itʼs what I do

© 2010 SofCheck, Inc.

4

What makes ParaSail Interesting?

 Pervasive (implicit and explicit) parallelism
 Inherently safe:

 preconditions, postconditions, constraints, etc., integrated
throughout the syntax

 no global variables
 no run-time checks; all checking at compile-time

 Small number of flexible concepts:
 Modules, Types, Objects, Operations

 User-defined literals, indexing, aggregates, physical
units checking

 Itʼs cool

© 2010 SofCheck, Inc.

5

Parallelism in ParaSail

 Parallel by default
 parameters are evaluated in parallel
 have to work harder to make code run sequentially

 Easy to create even more parallelism
 Process(X) || Process(Y) || Process(Z);

 Lock-based and lock-free concurrent objects
 Lock-based objects also support queued access
 User-defined delay and timed call based on queued access

 No global variables
 Can only access or update variable state via parameters

 Compiler prevents aliasing and unsafe access to non-
concurrent variables

© 2010 SofCheck, Inc.

6

Examples of ParaSail Parallelism

Z := F(U) + G(V); // F(U) and G(V) eval’ed in parallel

Process(A) || Process(B) || Process(C); // All 3 in parallel

for X => Root then X.Left || X.Right while X not null

 concurrent loop

 Process(X); // Process called on each node in parallel

end loop;

concurrent interface Box<Element is Assignable<>> is

 function Create() -> Box; // Creates an empty box

 procedure Put(var M : locked Box; E : Element);

 function Get(var M : queued Box) -> Element; // May wait

 function Get_Now(var M : locked Box) -> optional Element;

end interface Box;

type Item_Box is Box<Item>;

var My_Box : Item_Box := Create();

© 2010 SofCheck, Inc.

7

Annotations in ParaSail

Preconditions, Postconditions, Constraints, etc.
all use same Hoare-like syntax: {X != 0}

All assertions are checked at compile-time
 no run-time checks inserted

Location of assertion determines whether is a:
 precondition (before “->”)
 postcondition (after “->”)
 assertion (between statements)
 constraint (in type definition)

© 2010 SofCheck, Inc.

8

Examples of ParaSail Annotations

interface Stack <Component is Assignable<>; Size_Type is Integer<>> is

 function Max_Stack_Size(S : Stack) -> Size_Type {Max_Stack_Size > 0};

 function Count(S : Stack) -> Size_Type
 {Count <= Max_Stack_Size(S)};

 function Create(Max : Size_Type {Max > 0}) -> Stack
 {Max_Stack_Size(Create) == Max and Count(Create) == 0};

 function Is_Empty(S : Stack) -> Boolean
 {Is_Empty == (Count(S) == 0)};

 function Is_Full(S : Stack) -> Boolean
 {Is_Full == (Count(S) == Max_Stack_Size(S))};

 procedure Push(var S : Stack {not Is_Full(S)}; X : Component)
 {Count(S') == Count(S) + 1};

 function Top(S : Stack {not Is_Empty(S)}) -> Component;

 procedure Pop(var S : Stack {not Is_Empty(S)})
 {Count(S') == Count(S) - 1};

end interface Stack;

© 2010 SofCheck, Inc.

9

More Annotation Examples
type Age is new Integer<First => 0, Last => 200>;
type Youth is Age {Youth <= 20};
type Senior is Age {Senior >= 50};

function GCD(X, Y : Integer {X > 0 and Y > 0}) -> Integer
 {GCD > 0 and GCD <= X and GCD <= Y and
 X mod GCD == 0 and Y mod GCD == 0} is
 var Result := X; {Result > 0 and X mod Result == 0}
 var Next := Y mod X; {Next <= Y and Y - Next mod Result == 0}

 while Next != 0 loop
 {Next > 0 and Next < Result and Result <= X}
 const Old_Result := Result;
 Result := Next; {Result < Old_Result}
 Next := Old_Result mod Result;
 {Result > 0 and Result <= Y and Old_Result - Next mod Result == 0}
 end loop;

 return Result;
end function GCD;

© 2010 SofCheck, Inc.

10

Overall ParaSail Model

 ParaSail has four basic concepts:
 Module

 has an Interface, and Classes that implement it
 interface M <Formal is Int<>> is ...

 Type
 is an instance of a Module
 type T is M <Actual>;

 Object
 is an instance of a Type
 var Obj : T := T::Create(...);

 Operation
 is defined in a Module, and
 operates on one or more Objects of specified Types.

© 2010 SofCheck, Inc.

11

User-defined Indexing, Literals, etc.

 User-defined indexing
 Any type with operator “[]” defined

 User-defined literals
 Any type with operator “from_univ” defined from:

 Univ_Integer, Univ_Real,
 Univ_String, Univ_Character
 Univ_Enumeration

 User-defined ordering
 Define single binary operator “=?” (pronounced “compare”)
 Returns #less, #equal, #greater, #unordered
 Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

© 2010 SofCheck, Inc.

12

More Examples of ParaSail
concurrent class Box <Element is Assignable<>> is
 var Content : optional mutable Element; // starts null and can change size
 exports
 function Create() -> Box is // Creates an empty box
 return (Content => null);
 end function Create;

 procedure Put(var M : locked Box; E : Element) is
 M.Content := E;
 end procedure Put;

 function Get(var M : queued Box) -> Element // May wait
 queued until Content not null is
 const Result := M.Content;
 M.Content := null;
 return Result;
 end function Get;

 function Get_Now(var M : locked Box) -> optional Element is
 return M.Content;
 end function Get_Now;
end class Box;

© 2010 SofCheck, Inc.

13

Clock Example
abstract concurrent interface Clock <Time_Type is Ordered<>> is

 function Now(C : Clock) -> Time_Type;

 procedure Delay_Until(C : queued Clock; Wakeup : Time_Type)

 {Now(C’) >= Wakeup}; // queued until Now(C) >= Wakeup

end interface Clock;

concurrent interface Real_Time_Clock<...> extends Clock<...> is

 function Create(...) -> Real_Time_Clock;

 ...

end interface Real_Time_Clock;

var My_Clock : Real_Time_Clock <...> := Create(...);

const Too_Late := Now(My_Clock) + Max_Wait;

select // multi-way parallel queued call

 const Data := Get(My_Box) => Process(Data);

 || Delay_Until(My_Clock, Wakeup => Too_Late) =>

 Put_Line(Out_Stream, “My_Box not filled in time”);

end select;

© 2010 SofCheck, Inc.

14

Walk Parse Tree in Parallel

type Node_Kind is Enum < [#leaf, #unary, #binary] >;

 ...

for X => Root while X not null loop

 case X.Kind of

 #leaf =>

 Process_Leaf(X);

 #unary =>

 Process_Unary(X) ||

 continue loop with X => X.Operand;

 #binary =>

 Process_Binary(X) ||

 continue loop with X => X.Left ||

 continue loop with X => X.Right;

 end case;

end loop;

© 2010 SofCheck, Inc.

15

How does ParaSail Compare to ...

C/C++ -- built-in safety; built-in parallelism
Ada -- eliminates race conditions, increases

parallelism, eliminates run-time checks,
simplifies language

Java -- eliminates race conditions, increases
parallelism, avoids garbage collection

© 2010 SofCheck, Inc.

16

Problems with Tasks/Threads
(courtesy of Ted Baker)

Implicitly share access to global data
 encourages undisciplined sharing
 hides data flow within internal task logic

Mix concerns that should be separable
 semantics vs. performance

Limit concurrency, ability to use more cores
 hard coded

Limit fine-grained concurrency
 single thread of control, heavy weight

7/3/2009 ECRTS	
 2009	
 (Dublin)	
 -­‐	
 Ted	
 Baker 16

© 2010 SofCheck, Inc.

17

Problems with Protected Objects
 (courtesy of Ted Baker)

Implicitly share access to global data
 same as with tasks

Overly general & overly complex semantics
 limit cache-friendly optimization

7/3/2009 ECRTS	
 2009	
 (Dublin)	
 -­‐	
 Ted	
 Baker 17

© 2010 SofCheck, Inc.

18

Some of the Open Issues in ParaSail

 Some syntactic details
 e.g. postconditions:

 {Count(Sʼ) == Count(S) + 1} vs.
 {Count(S) == Count(old(S)) + 1} vs. ???

 e.g. formal “writable” parameters
 procedure Foo(var X : T); vs.
 procedure Foo(X : in out T);

 Do we need pointers at all?
 if so, when and where?

 If no global variables, how best to provide access to
global “singleton” objects from environment
 such as “the” database or “the” user or “the” filesystem
 “Context” object with singletons as components passed to main

subprogram?

© 2010 SofCheck, Inc.

19

Ultimate Test:
Physical Units Example

interface Float_With_Units
 <Base is Float<>; Name : Univ_String; Short_Hand : Univ_String;
 Unit_Dimensions : Array <Element_Type => Univ_Real,
 Index_Type => Dimension_Enum> := [others => 0.0]; Scale : Univ_Real> is

 operator "from_univ"(Value : Univ_Real)
 {Value in Base::First*Scale .. Base::Last*Scale} -> Float_With_Units;

 operator "to_univ"(Value : Float_With_Units) -> Result : Univ_Real
 {Result in Base::First*Scale .. Base::Last*Scale};

 operator "+"(Left, Right : Float_With_Units) -> Result : Float_With_Units
 {[[Result]] == [[Left]] + [[Right]]};

 operator "=?"(Left, Right : Float_With_Units) -> Ordering;

 operator "*"(Left : Float_With_Units; Right : Right_Type is Float_With_Units<>)
 -> Result : Result_Type is Float_With_Units<Unit_Dimensions =>
 Unit_Dimensions + Right_Type.Unit_Dimensions>
 {[[Result]] == [[Left]] * [[Right]]};

 operator "/"(Left : Left_Type is ...
 end interface Float_With_Units;

 type Meters is Float_With_Units<Name => “centimeters”, Short_Hand => “cm”,
 Unit_Dimensions => [#m => 1.0, #k => 0.0, #s => 0.0], Scale => 0.01>;

© 2010 SofCheck, Inc.

20

Conclusions

It is fun to start from scratch now and then
Can unify and simplify
Can focus on new issues

 pervasive parallelism
 integrated annotations enforced at compile-time

Read the blog if you are interested...
http://parasail-programming-language.blogspot.com

© 2010 SofCheck, Inc.

21

11 Cypress Drive
Burlington, MA 01803-4907

Tucker Taft

tucker.taft@sofcheck.com

http://parasail-programming-language.blogspot.com

+1 (781) 750-8068 x220

