
An Introduction to ParaSail:
Parallel Specification and
Implementation Language

S. Tucker Taft
AdaEurope, Valencia, June 2010

© 2010 SofCheck, Inc.

2

Outline of Presentation

 Why design a new language for safety-critical systems
from scratch?

 What makes ParaSail interesting?

 Parallelism in ParaSail

 Annotations in ParaSail

 More examples of ParaSail

 How does ParaSail compare?

 Open issues in ParaSail

© 2010 SofCheck, Inc.

3

Why Design A New Language for
Safety-Critical Systems?

80+% of safety-critical systems are developed in
C and C++, two of the least safe languages
invented in the last 40 years

SPARK needs some real competition
Every 32 years you should start from scratch
In 10 years, many chips will have 64+ cores
If we donʼt, someone else will
Itʼs what I do

© 2010 SofCheck, Inc.

4

What makes ParaSail Interesting?

 Pervasive (implicit and explicit) parallelism
 Inherently safe:

 preconditions, postconditions, constraints, etc., integrated
throughout the syntax

 no global variables
 no run-time checks; all checking at compile-time

 Small number of flexible concepts:
 Modules, Types, Objects, Operations

 User-defined literals, indexing, aggregates, physical
units checking

 Itʼs cool

© 2010 SofCheck, Inc.

5

Parallelism in ParaSail

 Parallel by default
 parameters are evaluated in parallel
 have to work harder to make code run sequentially

 Easy to create even more parallelism
 Process(X) || Process(Y) || Process(Z);

 Lock-based and lock-free concurrent objects
 Lock-based objects also support queued access
 User-defined delay and timed call based on queued access

 No global variables
 Can only access or update variable state via parameters

 Compiler prevents aliasing and unsafe access to non-
concurrent variables

© 2010 SofCheck, Inc.

6

Examples of ParaSail Parallelism

Z := F(U) + G(V); // F(U) and G(V) eval’ed in parallel

Process(A) || Process(B) || Process(C); // All 3 in parallel

for X => Root then X.Left || X.Right while X not null

 concurrent loop

 Process(X); // Process called on each node in parallel

end loop;

concurrent interface Box<Element is Assignable<>> is

 function Create() -> Box; // Creates an empty box

 procedure Put(var M : locked Box; E : Element);

 function Get(var M : queued Box) -> Element; // May wait

 function Get_Now(var M : locked Box) -> optional Element;

end interface Box;

type Item_Box is Box<Item>;

var My_Box : Item_Box := Create();

© 2010 SofCheck, Inc.

7

Annotations in ParaSail

Preconditions, Postconditions, Constraints, etc.
all use same Hoare-like syntax: {X != 0}

All assertions are checked at compile-time
 no run-time checks inserted

Location of assertion determines whether is a:
 precondition (before “->”)
 postcondition (after “->”)
 assertion (between statements)
 constraint (in type definition)

© 2010 SofCheck, Inc.

8

Examples of ParaSail Annotations

interface Stack <Component is Assignable<>; Size_Type is Integer<>> is

 function Max_Stack_Size(S : Stack) -> Size_Type {Max_Stack_Size > 0};

 function Count(S : Stack) -> Size_Type
 {Count <= Max_Stack_Size(S)};

 function Create(Max : Size_Type {Max > 0}) -> Stack
 {Max_Stack_Size(Create) == Max and Count(Create) == 0};

 function Is_Empty(S : Stack) -> Boolean
 {Is_Empty == (Count(S) == 0)};

 function Is_Full(S : Stack) -> Boolean
 {Is_Full == (Count(S) == Max_Stack_Size(S))};

 procedure Push(var S : Stack {not Is_Full(S)}; X : Component)
 {Count(S') == Count(S) + 1};

 function Top(S : Stack {not Is_Empty(S)}) -> Component;

 procedure Pop(var S : Stack {not Is_Empty(S)})
 {Count(S') == Count(S) - 1};

end interface Stack;

© 2010 SofCheck, Inc.

9

More Annotation Examples
type Age is new Integer<First => 0, Last => 200>;
type Youth is Age {Youth <= 20};
type Senior is Age {Senior >= 50};

function GCD(X, Y : Integer {X > 0 and Y > 0}) -> Integer
 {GCD > 0 and GCD <= X and GCD <= Y and
 X mod GCD == 0 and Y mod GCD == 0} is
 var Result := X; {Result > 0 and X mod Result == 0}
 var Next := Y mod X; {Next <= Y and Y - Next mod Result == 0}

 while Next != 0 loop
 {Next > 0 and Next < Result and Result <= X}
 const Old_Result := Result;
 Result := Next; {Result < Old_Result}
 Next := Old_Result mod Result;
 {Result > 0 and Result <= Y and Old_Result - Next mod Result == 0}
 end loop;

 return Result;
end function GCD;

© 2010 SofCheck, Inc.

10

Overall ParaSail Model

 ParaSail has four basic concepts:
 Module

 has an Interface, and Classes that implement it
 interface M <Formal is Int<>> is ...

 Type
 is an instance of a Module
 type T is M <Actual>;

 Object
 is an instance of a Type
 var Obj : T := T::Create(...);

 Operation
 is defined in a Module, and
 operates on one or more Objects of specified Types.

© 2010 SofCheck, Inc.

11

User-defined Indexing, Literals, etc.

 User-defined indexing
 Any type with operator “[]” defined

 User-defined literals
 Any type with operator “from_univ” defined from:

 Univ_Integer, Univ_Real,
 Univ_String, Univ_Character
 Univ_Enumeration

 User-defined ordering
 Define single binary operator “=?” (pronounced “compare”)
 Returns #less, #equal, #greater, #unordered
 Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

© 2010 SofCheck, Inc.

12

More Examples of ParaSail
concurrent class Box <Element is Assignable<>> is
 var Content : optional mutable Element; // starts null and can change size
 exports
 function Create() -> Box is // Creates an empty box
 return (Content => null);
 end function Create;

 procedure Put(var M : locked Box; E : Element) is
 M.Content := E;
 end procedure Put;

 function Get(var M : queued Box) -> Element // May wait
 queued until Content not null is
 const Result := M.Content;
 M.Content := null;
 return Result;
 end function Get;

 function Get_Now(var M : locked Box) -> optional Element is
 return M.Content;
 end function Get_Now;
end class Box;

© 2010 SofCheck, Inc.

13

Clock Example
abstract concurrent interface Clock <Time_Type is Ordered<>> is

 function Now(C : Clock) -> Time_Type;

 procedure Delay_Until(C : queued Clock; Wakeup : Time_Type)

 {Now(C’) >= Wakeup}; // queued until Now(C) >= Wakeup

end interface Clock;

concurrent interface Real_Time_Clock<...> extends Clock<...> is

 function Create(...) -> Real_Time_Clock;

 ...

end interface Real_Time_Clock;

var My_Clock : Real_Time_Clock <...> := Create(...);

const Too_Late := Now(My_Clock) + Max_Wait;

select // multi-way parallel queued call

 const Data := Get(My_Box) => Process(Data);

 || Delay_Until(My_Clock, Wakeup => Too_Late) =>

 Put_Line(Out_Stream, “My_Box not filled in time”);

end select;

© 2010 SofCheck, Inc.

14

Walk Parse Tree in Parallel

type Node_Kind is Enum < [#leaf, #unary, #binary] >;

 ...

for X => Root while X not null loop

 case X.Kind of

 #leaf =>

 Process_Leaf(X);

 #unary =>

 Process_Unary(X) ||

 continue loop with X => X.Operand;

 #binary =>

 Process_Binary(X) ||

 continue loop with X => X.Left ||

 continue loop with X => X.Right;

 end case;

end loop;

© 2010 SofCheck, Inc.

15

How does ParaSail Compare to ...

C/C++ -- built-in safety; built-in parallelism
Ada -- eliminates race conditions, increases

parallelism, eliminates run-time checks,
simplifies language

Java -- eliminates race conditions, increases
parallelism, avoids garbage collection

© 2010 SofCheck, Inc.

16

Problems with Tasks/Threads
(courtesy of Ted Baker)

Implicitly share access to global data
 encourages undisciplined sharing
 hides data flow within internal task logic

Mix concerns that should be separable
 semantics vs. performance

Limit concurrency, ability to use more cores
 hard coded

Limit fine-grained concurrency
 single thread of control, heavy weight

7/3/2009 ECRTS	 2009	 (Dublin)	 -‐	 Ted	 Baker 16

© 2010 SofCheck, Inc.

17

Problems with Protected Objects
 (courtesy of Ted Baker)

Implicitly share access to global data
 same as with tasks

Overly general & overly complex semantics
 limit cache-friendly optimization

7/3/2009 ECRTS	 2009	 (Dublin)	 -‐	 Ted	 Baker 17

© 2010 SofCheck, Inc.

18

Some of the Open Issues in ParaSail

 Some syntactic details
 e.g. postconditions:

 {Count(Sʼ) == Count(S) + 1} vs.
 {Count(S) == Count(old(S)) + 1} vs. ???

 e.g. formal “writable” parameters
 procedure Foo(var X : T); vs.
 procedure Foo(X : in out T);

 Do we need pointers at all?
 if so, when and where?

 If no global variables, how best to provide access to
global “singleton” objects from environment
 such as “the” database or “the” user or “the” filesystem
 “Context” object with singletons as components passed to main

subprogram?

© 2010 SofCheck, Inc.

19

Ultimate Test:
Physical Units Example

interface Float_With_Units
 <Base is Float<>; Name : Univ_String; Short_Hand : Univ_String;
 Unit_Dimensions : Array <Element_Type => Univ_Real,
 Index_Type => Dimension_Enum> := [others => 0.0]; Scale : Univ_Real> is

 operator "from_univ"(Value : Univ_Real)
 {Value in Base::First*Scale .. Base::Last*Scale} -> Float_With_Units;

 operator "to_univ"(Value : Float_With_Units) -> Result : Univ_Real
 {Result in Base::First*Scale .. Base::Last*Scale};

 operator "+"(Left, Right : Float_With_Units) -> Result : Float_With_Units
 {[[Result]] == [[Left]] + [[Right]]};

 operator "=?"(Left, Right : Float_With_Units) -> Ordering;

 operator "*"(Left : Float_With_Units; Right : Right_Type is Float_With_Units<>)
 -> Result : Result_Type is Float_With_Units<Unit_Dimensions =>
 Unit_Dimensions + Right_Type.Unit_Dimensions>
 {[[Result]] == [[Left]] * [[Right]]};

 operator "/"(Left : Left_Type is ...
 end interface Float_With_Units;

 type Meters is Float_With_Units<Name => “centimeters”, Short_Hand => “cm”,
 Unit_Dimensions => [#m => 1.0, #k => 0.0, #s => 0.0], Scale => 0.01>;

© 2010 SofCheck, Inc.

20

Conclusions

It is fun to start from scratch now and then
Can unify and simplify
Can focus on new issues

 pervasive parallelism
 integrated annotations enforced at compile-time

Read the blog if you are interested...
http://parasail-programming-language.blogspot.com

© 2010 SofCheck, Inc.

21

11 Cypress Drive
Burlington, MA 01803-4907

Tucker Taft

tucker.taft@sofcheck.com

http://parasail-programming-language.blogspot.com

+1 (781) 750-8068 x220

