
GNAT Pro Innovations
for High-Integrity Development

José F. Ruiz <ruiz@adacore.com>
Senior Software Engineer

Ada Europe 2010, Valencia

2010-06-15

www.adacore.com	

Slide: 2 Copyright © 2009 AdaCore

Index

•  Development environment

•  Tools

–  Static analysis

–  Dynamic analysis

•  Research projects

•  Open initiatives

Framework for High-Integrity
Development

Slide: 4 Copyright © 2009 AdaCore

GNAT Pro High-Integrity Edition Package Overview

•  For High-Integrity Development
–  Reduced-Footprint & Certifiable Ada Run-Times

–  Ada Run-Time Customization Capability

–  Support & On-Line Consulting Adapted to the Requirements of Safety-Critical
Application Development

–  Certified/qualified run times
–  Certification Material (DO-178B, Level A) for the Cert Run-Time for Wind River PSC

ARINC653

–  Qualification Material (ECSS-E-ST-40C and ECSS-Q-ST-80C, Level B) for the Ravenscar
Run-Time for ERC32, LEON2, LEON3 (in progress)

•  Tools for High-Integrity
–  Coding Standard Analysis

–  Static Stack Analysis

–  Peer Review

–  Design by Contract

–  Code Coverage Analysis

–  Traceability Analysis Kit

Slide: 5 Copyright © 2009 AdaCore

Definition and Verification of the
Software Code Standard

Slide: 6 Copyright © 2009 AdaCore

Code Standard: What the DO-178B Standard Says

4.5: SOFTWARE DEVELOPMENT STANDARDS
…
NOTE: … Constraints and rules on development,
design and coding methods can be included to control
complexity. Defensive programming practices may
be considered to improve robustness.

11.8 SOFTWARE CODE STANDARDS
…
These standards should include:
a. Programming language(s) to be used and/or defined subset(s)…
b. Source Code presentation standards…
c. Naming conventions for … subprograms, variables, and constants.
d. Conditions and constraints imposed on permitted coding conventions…
e. Constraints on the use of the coding tools.

Slide: 7 Copyright © 2009 AdaCore

Getting Maximum Leverage from GNAT Pro

Actors

The Ada
Language

Configuration
Pragmas

Static
Checking

Tools

Code
Standard
Checker

Code Metric
Tool

Slide: 8 Copyright © 2009 AdaCore

Definition of a Code Standard (references to RTCA/DO-178B)

•  Compliance to a Source Code Presentation (11.8.b)
–  Line length
–  Indentation

•  Controlling complexity (6.3.4.d)
–  Limit nesting level of control structures
–  Measurement of expression complexity (e.g. McCabe)

•  Ease Control Flow Analysis (6.3.3.b – Reviews and
Analyses of the Software Architecture)
–  Forbid (see also ISO/IEC TR 15942 – 2.3.1):

–  goto statements
–  improper returns
–  exceptions as control flows
–  exit statements exiting from an outer loop
–  Recursions

•  Consistent Naming Conventions
–  Suffix rules (e.g. _T for type, _C for constants, etc.)

Slide: 9 Copyright © 2009 AdaCore

Checking Code Standard

•  At the Tool Level

–  GNATcheck

-Rall

+RStyle_Checks: 3 -- indentation of 3
characters

+RStyle_Checks: M79 -- line length <= 79
characters

+ROverly_Nested_Control_Structure:3 -- nesting level <= 3

+RNo_Goto_Statements

+RImproper_Returns

+RMisnamed_Identifiers: Type_Suffix=_T, Constant_Suffix=_C

+RExceptions_As_Control_Flow

+ROuter_Loop_Exits GNATcheck being qualified (DO-178B) as a verification tool

Slide: 10 Copyright © 2009 AdaCore

Code Metrics

•  Tool support

–  GNATmetric
Line metrics summed over 90 units
 code lines : 4186

Element metrics summed over 90 units

 all statements : 737

 all declarations : 2036

 logical SLOC : 2773

134 public types in 30 units including

 16 private types

166 type declarations in 38 units

246 public subprograms in 41 units

181 subprogram bodies in 32 units

Average cyclomatic complexity: 1.98

Static Stack Analysis

Slide: 12 Copyright © 2009 AdaCore

Why stack analysis?

6.3.4 Reviews and Analyses of the Source Code

[…]

f. Accuracy and consistency: The objective is to determine the correctness and
consistency of the Source Code, including stack usage, fixed point arithmetic
overflow and resolution, resource contention, worst-case execution timing,
exception handling, use of uninitialized variables or constants, unused
variables or constants, and data corruption due to task or interrupt conflicts.

Slide: 13 Copyright © 2009 AdaCore

The Static Approach - GNATstack

•  What it brings

–  Gives an upper Worst Case bound

–  Qualifiable Tool

–  A safe answer to the DO-178B requirement

•  To be aware of

–  Worst Case may be pessimistic – worst case on a path may never be taken

–  Coding rules (typical safety-critical standards will forbid them)

–  No cycles in the call graph

–  No recursions

–  No unbounded frame

–  User input may be needed

–  Indirect calls

–  External calls

⇒  Simplifies & automates worst-case stack usage analysis

Slide: 14 Copyright © 2009 AdaCore

GNATstack Workflow

GNAT Pro Compiler

 Ada C C++

S o u r c e C o d e

•  Max Stack

•  Cycles

•  Indirect calls

•  External calls

•  Unbounded

•  Frames

S t a c k U s a g e R e p o r t

.o

O b j e c t C o d e

•  Stack Usage •  Call Graph

P e r F u n c t i o n

GNATstack

•  Stack Usage •  Call Graph

U s e r E n t r y

Per-subprogram Stack Consumption

D e c o r a t e d C a l l G r a p h

Slide: 15 Copyright © 2008 AdaCore

Evolutions

•  Support for Ada, C, C++

•  Dispatching calls
–  Extend the compiler to tell

–  Class hierarchies

–  Overloaded primitive operations

–  Root class/method at each dispatching call

–  Global analysis to select the set of possible target calls

–  May be refined manually or by tool doing data-flow analysis

•  Indirect calls
–  The candidate subprograms for indirect calls are those

–  With compliant profile

–  For which a reference has been taken

Slide: 16 Copyright © 2009 AdaCore

Automatic Peer Review

Slide: 17 Copyright © 2009 AdaCore

Peer Review

6.3.4 Reviews and Analyses of the Source Code

[…]

f. Accuracy and consistency: The objective is to determine the correctness and
consistency of the Source Code, including stack usage, fixed point
arithmetic overflow and resolution, resource contention, worst-case
execution timing, exception handling, use of uninitialized variables or
constants, unused variables or constants, and data corruption due to task
or interrupt conflicts.

Slide: 18 Copyright © 2008 AdaCore

CodePeer in Action

•  Static run-time errors detection

•  Test vectors generation

•  Pre/post conditions generation

•  Analysis results consolidation

C o d e P e e r

•  compile-time
 analysis
•  local analysis

Day-to-day
development

•  global change
 impact analysis

Software
maintenance

•  global analysis
•  test vectors
 leverage

Project quality
assurance

Slide: 19 Copyright © 2008 AdaCore

CodePeer Area of Action

•  Uninitialized variables

•  Never ending subps/loops

•  Race conditions

•  Dead code

P r o g r a m m i n g E r r o r s

•  out-of-bound indexing

•  numeric overflow

•  division by zero

•  incorrect invariant

A d a R u n - T i m e C h e c k s

•  Assert statements

•  if … then … raise … control flow

U s e r C h e c k s

Design by Contract

Slide: 21 Copyright © 2009 AdaCore

Design by Contract

Encapsulation

Packages OOP

Invariants

Pre/Post Conditions

A
d

a

G
N

A
T

P

ro

Slide: 22 Copyright © 2009 AdaCore

Assertions

•  Part of Ada 2005

procedure Update_Speed_Counter is

 Speed : Speed_T; -- km/h

begin

 Speed := Get_Speed;

 pragma Assert (Speed <= 280); -- Max theoretical speed = 261 km/h

end Update_Speed_Counter;

•  Activated During Verifications/Tests

=> Robustness testing

•  Configuration Pragma Assert_Policy to enable/disable

assertions

Slide: 23 Copyright © 2009 AdaCore

Pre/Post Conditions with GNAT Pro

•  Tightens the Contract between Caller and Callee

•  Additional Semantic Information

–  Can be used for extra checks

•  Checks that the Contract is Respected

–  At run time

–  Statically

Slide: 24 Copyright © 2009 AdaCore

Various Uses of Pre/Post Conditions

SPARK
GNAT Pre/

Post
Conditions

CodePeer P
re

/
P

o
s
t

C
o

n
d

it
io

n
s

E
x

p
li

c
it

Im

p
li

c
it

Analysis

Static Dynamic

Slide: 25 Copyright © 2009 AdaCore

Pre/Post Conditions with GNAT Pro

package Data_Processing is

 type Data_T is private;

 type Data_A is access Data_T;

 type Links_T is record

 Link1 : Data_A;

 Link2 : Data_A;
 end record;

 function Processing (Param : Data_T) return Links_T;

 pragma Precondition (Param.Link1 not null or else Param.Link2 not null);
 pragma Postcondition
 (Processing’Result.Link1 not null or else Processing’Result.Link2 not
null);

end Data_Processing;

Slide: 26 Copyright © 2009 AdaCore

SPARK

•  The Correctness-by-Construction approach

•  … more after the coffee

Slide: 27 Copyright © 2009 AdaCore

Hi-Lite

•  New research project
–  AdaCore with Altran Praxis, Astrium Space Transportation, CEA-LIST, the

ProVal team of INRIA and Thales Communications

•  Goal
–  Simplify the use of formal methods

•  How
–  Loose integration of formal proofs with testing and static analysis

–  Modular
–  Divide-and-conquer approach

–  Early adoption by all programmers in the software life cycle

–  Mixed Ada/C

 http://www.open-do.org/projects/hi-lite

Slide: 28 Copyright © 2009 AdaCore

Hi-Lite: Common Language for Properties

Slide: 29 Copyright © 2009 AdaCore

Code Coverage Analysis

Slide: 30 Copyright © 2009 AdaCore

References to the Standard

Table A-7

Verification Of Verification Process Results

Objective Applicability by
SW Level

Description Ref. A B C D

…

5 Test coverage of software
structure (modified condition/
decision) is achieved.

6.4.4.2

6 Test coverage of software
structure (decision coverage) is
achieved.

6.4.4.2a
6.4.4.2b

7 Test coverage of software
structure (statement coverage)
is achieved.

6.4.4.2c

…

Slide: 31 Copyright © 2009 AdaCore

Bridging the Gap between Source and Object Code Coverage

HOST

TARGET

Pure
Functional Test

Instrumented
Functional Test

Instrumented
Executable

Sources

Approach by Instrumentation

Executable

Compilation
Link

Compilation
Link

Instrumentation

Coverage
Data

Coverage
Information

Compilation
Link

Sources

Pure
Functional Test

Pure
Functional Test

Instrumented
Environment

Execution Trace

Executable

Coverage
Information

Approach by Virtualization

http://www.open-do.org/projects/couverture

Slide: 32 Copyright © 2009 AdaCore

Achievements of the Project “Couverture”

Coverage Levels

•  Object:

–  Instruction

–  Object branch

•  Source

–  Statement

–  Decision

–  Modified Condition/Decision

Aggregated Coverage

•  Capitalization: multiple

executions

•  Consolidation: different

executables exercising the

same function

Tool Qualification

•  For use in DO-178B Level A certification activities

Slide: 33 Copyright © 2009 AdaCore

Emulator

•  Open-Source simulation solution: QEMU

•  Efficient Simulation Technology

•  Development platform close to the final HW platform

–  PowerPC / LEON

•  Code tested can be the code running on the final target

•  Avoids endianness issues

•  Eases functional testing

Traceability Analysis Kit

Slide: 35 Copyright © 2009 AdaCore

From Source Code to Object Code

•  Option 1
–  Code coverage at the source level

–  Traceability analysis on the application source code

•  Option 2
–  Code Coverage at the object level

–  Bypass of the source to object code traceability analysis

•  Option 3
–  Code coverage at the source level

–  Traceability analysis on a representative testsuite

6.4.4.2 Structural Coverage Analysis
[…]
The structural coverage analysis may be performed on the Source Code,
unless the software level is A and the compiler generates object code that is
not directly traceable to Source Code statements….

Slide: 36 Copyright © 2009 AdaCore

Traceability Package

Code Standard

User Source Code

Object Code

Testsuite

Object Code

Follows

Representative
of

Covers &
Follows

Traceability
Analysis

Slide: 37 Copyright © 2009 AdaCore

Traceability Package

Code Standard

User Source Code

Object Code

Testsuite

Object Code

Traceability
Analysis

Additional
verification to

produce
structural
coverage

Slide: 38 Copyright © 2009 AdaCore

Validity of a Traceability Analysis Package

•  The answer comes from the “Final Report for
Clarification of DO-178B […]” (RTCA/DO-248B)

4.12.2.2 Approach to the Traceability Analysis
[…]
One approach to this analysis is to produce some code with fully
representative language constructs of the application (e.g., case
statements, if-then-else statements, loops) and to analyze the resultant
object code. Also, it is important that the individual constructs are
completely representative of the constructs used in the target object code
build, including complex structures (e.g., nested routines). […] The choice of
the representative code constructs should be agreed with the appropriate
certification authority. […]

Slide: 39 Copyright © 2009 AdaCore

Safer Programming: the AdaCore Answer

CodePeer

Solutions for
Standard

Development

GNAT Pro

Static
Checking Tools

Code Standard
Checker

Advanced
Compiler
Warnings

Code Standard
Checker

Advanced
Compiler
Warnings

Dynamic
Checks

Pre/post
Conditions

Uninitialized
Variables

Uninitialized
Variables

Pre/post
Conditions

CodePeer

Slide: 40 Copyright © 2009 AdaCore

Safer Programming: the AdaCore Answer

Solutions for
Safety-Critical
Development

Traceability
Study

MD/CD Code
Coverage

GNAT Pro
High-Integrity

Edition

Static
Checking Tools

Code Standard
Checker

Advanced
Compiler
Warnings

Stack
Checking

Traceability
Study

MD/CD Code
Coverage

Stack
Checking

SPARK Pro SPARK Pro Qualification
Material

Qualification
Material

Slide: 41 Copyright © 2009 AdaCore

Executable Requirements (XReq)

Slide: 42 Copyright © 2009 AdaCore

XReq for DO-178B

•  Executable Requirements
for Ada, C and C++
–  Put together the requirements

and the tests
–  Tests written in English
–  HLT and LLT automatically

generated in Ada, C or C++

•  Help to bring agile to
critical projects using
Behavior Driven
Development (BDD)

•  Open Sourced by SOGILIS
in the Open-DO forge http://www.open-do.org/projects/xreq

Slide: 43 Copyright © 2009 AdaCore

Conclusions

Slide: 44 Copyright © 2009 AdaCore

Conclusions

•  AdaCore committed to
–  Safety high-integrity development

–  Open development

–  Looking for new ways of helping Ada and safety-critical developers

•  Open-DO
–  Lean and Agile methodologies

–  For safety-critical development

–  Open source tools and material
–  Including certification/qualification material

 www.open-do.org

