
Tool Support for Verification ofTool Support for Verification of
Software Timing and Stack Usage for a
DO 178B L l A S
Esta informação é propriedade da Embraer e não pode ser usada ou reproduzida sem autorização por escrito.

DO-178B Level A System

Dr. Ian BrosterEng. Daniela Cristina Carta
ianb@rapitasystems.comdaniela.carta@embraer.com.br

Eng. Felipe Kamei
felipe.kamei@embraer.com.br

Will Lunniss
wlunniss@rapitasystems.com

Topicsp

Importance of determining WCET
Flight Control System (FCS) software application
Rapita Verification Suite (RVS) overviewp ()
Method to obtain worst case execution time
(WCET) and worst case stack usage(WCET) and worst case stack usage
Results achieved

Timing and Stackg

Compliance with timing and memory
i trequirements

DO-178B: obtain the worst case timing and the
stack usage
Optimizing the usage of resources, such as CPU p g g ,
usage and stack memory

Compliance to DO-178Bp

Section 6.3.4: “Reviews and Analyses of the
S C d ”Source Code”
Tests execution:

Functional analysis Timing analysisFunctional analysis Timing analysis
Stack usage analysis

Tested software features

Embraer R&D project
Generate and exercise processes for the development of critical• Generate and exercise processes for the development of critical
aircraft system and software

Proof of Concept: Flight Control System (FCS) - Level AProof of Concept: Flight Control System (FCS) Level A
software
• C programming language
• 73,000 lines of code
• 7448 PowerPC microcontroller

Operating system compliant with avionics standards• Operating system compliant with avionics standards

Initial requirements:
• WCET < 5 ms• WCET < 5 ms
• Stack usage < 20,000 bytes

Rapita Verification Suitep

Rapita Verification Suite (RVS):
R iTi t t ifi ti f ft• RapiTime: on-target verification of software
timing
R iC d• RapiCover: code coverage

• RapiSafeStack: stack usage (prototype)
Automation:
• Software instrumentation
• Execution time and stack usage

measurement
• Worst case analysis

Worst Case Execution Time

Structural code analysis is
performedperformed
Measures time from test cases proc_1 proc_2

execution on target
Determines worst-case path,
worst-case execution time and
many other metrics

proc_3 proc_4

110 85140

No need of a test case that takes to the
worst case path (reduction of effort)worst-case path (reduction of effort)

User opinionp
Allows setting a level of instrumentation suitable
for each procedurefor each procedure
No need of modification on building environment
Generates code structure and call treeGenerates code structure and call tree
Performs measurements in the application
running on the real targetg g
Captures and extracts execution data
Generates a rich report for user analysisp y
• Comparison with resource usage

requirements
• Could support certification argumentation
• Optimization strategies

Tool Qualification

RVS qualification according DO-178B would be
necessary
Will be qualified as a verification tool
• Using qualification Kit from Rapita Systems

Set of documentation for qualification activities q
compliant to DO-178B
Complemented with tool user activities in theComplemented with tool user activities in the
user environment

RVS integration with FCS g

Level of instrumentation
Ti i l i b h t t d d• Timing analysis: every branch, start and end
of functions
St k l i t t d d f f ti• Stack analysis: start and end of functions

Timing analysis: 13,000 instrumentation points
Stack analysis: 152 instrumentation points
Operating system calls measured end-end (as
“black boxes”)

Test Scenarios

Functional verification and
structural coverage
analysis performed only
internally (component

FCS Application
constant

internally (component
level)
Formal process:
components selected tocomponents selected to
fully exercise MC/DC
Verification for the whole

li ti f d lapplication performed only
at system level
Functional test case Components not tested according to formal process

scenarios for the whole
application not available

Components not feasible (deactivated code)
Components tested according to formal process (MC/DC coverage)

Test Coverageg

Created about 785 test
scenarios (500 input

FCS Application
constant

parameters)
Instrumentation points
coveragecoverage
• Timing analysis: ≈ 77%
• Stack analysis: 100%

Deactivated code: time
and stack usage not
evaluatedComponents not tested according to formal process evaluatedComponents not feasible (deactivated code)

Components tested according to formal process (MC/DC coverage)

Alternative testing approachg pp

Alternative approach:
exercising application’s
internal components
separately

FCS Application
constant

separately
Test cases (and drivers)
prepared for formal p p
functional verification to
be reused (saved effort)
Considered asConsidered as
standalone software
Justification is required Components not tested according to formal process

for analysis performed in
modified application

Components not feasible (deactivated code)
Components tested according to formal process (MC/DC coverage)

Trace data extraction

External communication only available through
aerona tic b saeronautic bus
Data recorded in a buffer
After tests execution buffer is written using
communication APIs
Network configured to route data from target to PC

Target D i fTarget

FCS

Driver for
aeronautic

bus

Aeronautic

App Comm
API

bus

Results

Worst Case Execution Time Worst Case Stack Usage

reserved
Resources
optmization

20,000 bytes

Resources

FCS

5 ms
2.28 ms

reserved optmization

3,416 bytes

optmization

5 ms , y

Conclusions

Task can be repeated easily for new analysis
Method considered efficient
A more accessible method to extract trace data
should be considered earlier in the project
A test set that exercises most of the code branches
is needed
Analysis can be performed in components
separately
• Different execution conditions must be evaluated, so

measurements can be considered accurate
Both approaches considered acceptable by DERs

