12 June 2012

Source Code as the Key Artifact in

Requirement-Based Development:
The Case of Ada 2012

José F. Ruiz Cyrille Comar Yannick Moy

Senior Software Engineer Managing Director
AdaCore

Senior Software Engineer

AdaCaore AdaCore

Ada-Europe 2012, Stockholm

Copyright © 2012 AdaCore Slide: 1

Safety-critical standards
— The case for DO-178

Artifacts to produce
— How to manage them easily
— How to verify them

How to handle their interrelationship

Conclusion

Safety-Critical Software

« What is “safety critical” software?

— Failure can cause loss of human life or have other catastrophic consequences

« How does safety criticality affect software development?
— Regulatory agencies require compliance with certification requirements

— Safety-related standards may apply to the finished product, to the development process,
or both

DO-178: the civil avionics standard

o “Just” reasonable development process...
— Planning
— Specify requirements
— Implement only requirements
— Test
— Verify tests
— Reviews

— Control the development process

... how this process is checked and validated (objectives are met)

Bt ...

© ... and all development artifact must be traceable

« That’s the certification process

o Certification authorities check that the process is followed

— All software plane flying in the civil air space must have software certified

 Approaches to handle the evidences
— Traditional activity-centric
Temporal and causal dependencies among activities
— Artifact-centric

Focus on what the activities produce

Integration
Testing

Unit
Testing

Goals of this presentation: to take-away

e The goalis to centralize in Ada 2012 code the artifacts generated during
development and verification
— Requirements
— Architecture
— Code
— Test cases
— Test procedures
— Testresults

e Traceability made easy

Requirements

o Software requirement process produces O M WL

— High-level requirements (HLRS) Eim ‘D
What to implement

— Low-level requirements (LLRS) m

=

How to implement

« What we propose to represent LLRs
— Ada 2012 pre- post- conditions
Design-by-Contract approach
— Informal part of the requirement can also be captured

package Arith is
procedure Double (X : in out Integer) with
Pre => X >= Integer'First / 2 and then
X <= Integer'Last / 2,
Post => X = 2 * X'0ld;
end Arith;

DO-178 objectives for requirements

« Accuracy and consistency
— Contracts defined by the static and dynamic semantics of Ada

— Use coding standard avoiding ambiguities
Rules such as: “Use only short-circuit boolean operators”

o Verifiability
— Formal prove
— Contracts translated into logical formulas that can be proved
— Subprograms proved in isolation using callee’s contracts
— Testing
— Contracts translated into assertions checked at execution time
— Or a mixed approach
— Proving what is easy to prove and test the rest

Software architecture

« Architecture implementing the requirements A7 Y

o Lt

« We propose to use

— Ada package specs

— Encapsulates components and subsystems

— Shows their interfaces MaFishobon Coutadiel 150 /o
| Abmar|
Seruhie Far D sl Facet _|| recon npe

— With clauses and hierarchical dependencies ey | i

Adust (prisadure)

e e nleriace Finalire (procebsee)

— Relationships Dra procadae e procedre

Mﬂwﬂ -
controller.ads it R

ool fype

Mo Swing_Aceess
Adjust dprovedure

Finalis: | penoedure)

receiver.ads sender.ads E Label {function

/ \
/ Y,
Graphics. Sqpuare Object '-'! o Graphics Rocuamghe Ot [&
rcurd by recxand by
.ﬂiﬁ E Sake Matural Hinghit: Natural

Widde Mamiral

Diraw (| proceduse)
Labee] i famstion | Do (| procedure]

Sare | Function) Labwel {lunctam)

Sire (function)

DO-178 objectives for the software architecture

« Consistency
— Data and control flow analysis

— Ada helps
 Visibility rules limit the scope of the analysis
« Coding standards may restrict data and control coupling
* Flow information in parameter mode

— SPARK can take you much further

procedure Process
(Output : out T;
Inputl, Input2 : in T);

--# global out Global Output;

--# in Global Input;
--# derives Output from Inputl, Input2 &
--# Global Output from Global Input, Input2;

--# pre Inputl /= 0;
--# post Output = Input2 / Inputl;

« Codeis produced by the software coding process, from

— Low-level requirements / 4) =
— Architecture
Yol - |) T
« We propose to
— Implement the Ada bodies corresponding to the specs O

— Compliant with LLRs (contracts)

package Arith is
procedure Double (X : in out Integer) with
Pre => X >= Integer'First / 2 and then
X <= Integer'Last / 2,
Post => X = 2 * X'0ld;
end Arith;

package body Arith is
procedure Double (X : in out Integer) is
begin
X := 2 * X;
end Double;
end Arith;

Code (I1)

Robustness as part of the requirements

package Arith is
procedure Double (X : in out Integer) with
Post => (if X < Integer'First / 2 then

X = Integer'First
elsif X > Integer'Last / 2 then

X
else

Integer'Last

X = 2 * X’'01d)

end Arith; package body Arith is

procedure Double (X : in out Integer) is
begin
if X < Integer'First / 2 then

X := Integer'First;

elsif X > Integer'Last / 2 then
X := Integer'Last;

else
X =2 * X;

end if;

end Double;
end Arith;

DO-178 objectives for the code (I)

e Compliance with LLRs
1. Implement the required functionality ...
— Testing or contract proving
2. ... and only that

— This is more difficult but:
* You can do manual code review, or

* You can rely on exhaustive coverage analysis, or

Also symbolic execution
« Use SPARK flow analysis
Detection of ineffective statements

« Compliance with software architecture
— Match desired data and control flow

— Ada already helps
— With visibility control and parameter modes

— You can visualize control-flow with tools
— Compiler, GPS, ...

— Tools can help data-flow analysis showing who uses the data

— Or define data and information flow with SPARK

Gat

Compute

(Decl) controlle |4¢I 5

/\

(Decl) receiver.ads:4
Controller.Compute: 13:29

(Decl) drivers.ads:5

Receiver.Get: 12:18

|

Read =]

3

(Decl) sender.ads:4

Controller.Compute: 13:14

|

Write b
(Decl) drivers ads:4
Sender.Send: 11:15

DO-178 objectives for the code (ll)

« Verifiability
— Avoid statements and structures that cannot be verified
— Everything accessible from the spec is easy
— Private parts with child units
— Everything hidden in package bodies must be used through the spec

« Conformance to coding standard
— Ada provides pragma Restrictions and pragma Profile

— There are tools such as GNATcheck, AdaControl, ... for extended and fine-grain checking

Traceability to LLRs

— Straightforward: implementation linked to the contracts

e« Accuracy and consistency
— It is about correctness and consistency of the code
— Ada reliability underpinnings
— You can go a step further with mathematical analysis
— SPARK, CodePeer

Testing

« Thegoalisto /_—/'i OD
— Demonstrate code satisfies the requirements y-— 4
= ==

— Potential sources of errors have been removed
y - 4

o Three kinds of tests
— Hardware/software integration
— Software integration
— Low-level testing

« What we propose for low-level testing is
— Follow the DO-178C Formal Method Supplement, with mix of
— Automated formal verification
— Testing

e Translate contract into run-time checks, and
* Create a test aspect

Test aspect

package Arith is

procedure Double (X : in out) with
Pre => X >= 'First / 2 and then
X <= 'Last / 2,

Post => X = 2 * X'0Old,

Test Case => (Name => "positive",
Mode => Nominal,
Requires => X >= 0,
Ensures => X >= 0),

Test Case => (Name => "lower-bound",
Mode => Nominal,
Requires => X = 'First / 2,
Ensures => X = 'First),

Test Case => (Name => "off-by-one-positive",
Mode => Robustness,
Requires => X = 'Last / 2 + 1,
Ensures => X = 'Last),

Test Case => (Name => "off-by-one-negative",
Mode => Robustness,
Requires => X = 'First / 2 - 1,
Ensures => X = 'First) ;

end Arith;

Traceability

 Every single artifact must be traceable

— Modifications applied to any artifact must be traceable too

ReHé%ri]r(Ie_r?]\(/aﬂts HR1
| I |
Low level Requirements LL1 LL2
| I |
Code C2
I |
Test cases 1 C2

Test procedures

Test results

Traceability — How to

Architecture Requirements

package Arith is
procedure Double (¥X:/in out Integer) with

Pre => ..,

Code

Post => .., package-body Arith is
<:::;__I§st_Case fi_gz:::> procedure Double (X : in out Integer) is
end Arith;
Test cases

- GNATtest

procedure T —4dn out Test) is
procse :) renames

OK (Operators.Test Data.Tests : Test Double XXX

_ Total Tests Run:
Test procedures AUnit Successful Tests:
Failed Assertions:
Unexpected Errors:

o o =zZZ

Conclusion

« Ada 2012 very helpful in a DO-178 context
— Contracts for the requirements
— Modularity, encapsulation, visibility control for the architecture
— Aspect programming for testing

— Automatic generation of test procedures and test results

« Traceability links are there by construction

— Tools help automating generation of artifacts

 Facilitates hybrid approach for verification

— Formal proofs plus testing

e Reviews are more effective

— The contextis clear

 Maintainability and evolution easier
— More Agile

