Formal Modelling for Ada Implementations:
Tasking Event-B

A. Edmunds A.Rezazadeh M. Butler [. Maamria

Department of Electronics and Computer Science
University of Southampton

Ada Europe 2012

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Outline

0 Event-B

@ Background
@ Overview of Event-B
@ Composition / Decomposition

e Implementation-Level Modelling
@ Tasking Event-B
@ The User Interface: Machine and Event Annotations

e Adding New Types, and Translation Rules
@ Translation Rules for Ada
@ Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Background

Edmunds, Rezazadeh, Butle Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Motivation

@ Automatic Code Generation from Event-B To Ada,
o for Multi-Tasking Embedded Systems.
e Modelling of Controllers / Protected, Shared Data and
Environment.
e with a stream-lined approach.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Motivation

@ Automatic Code Generation from Event-B To Ada,

o for Multi-Tasking Embedded Systems.

e Modelling of Controllers / Protected, Shared Data and
Environment.

e with a stream-lined approach.

@ Extensibility: add new Types, and their Implementations.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Motivation

@ Automatic Code Generation from Event-B To Ada,

o for Multi-Tasking Embedded Systems.

e Modelling of Controllers / Protected, Shared Data and
Environment.

e with a stream-lined approach.

@ Extensibility: add new Types, and their Implementations.
@ Latest Work:

e Gone from from ‘demonstrator’ tool to an integrated tool.
e Improved static checking.
e Perform code generation from Event-B State-machines.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
QOverview of Event-B
Composition / Decomposition

Resources

@ From the EU funded RODIN, and DEPLQY projects:

e http://www.event-b.org/
e http://wiki.event-b.org/index.php/Main_Page

@ Continuing with the Advance project:

e http://www.advance-ict.eu/

e ... a unified tool-based framework for automated formal
verification and simulation-based validation of
cyber-physical systems.

@ Rodin Tools - A new not-for-profit company.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Overview of Event-B

Edmunds, Rezazadeh, Butle Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.
@ Specify Sets, Constants, and Axioms.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.
@ Specify Sets, Constants, and Axioms.
@ Machine Component.
e Specify Variables, Invariants, and Events.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

@ Based on Set-Theory + Predicate Logic + Arithmetic,

e Tool Support, with Automatic and Interactive proof.
o Refinement, for incremental development.

@ Context Component.

@ Specify Sets, Constants, and Axioms.
@ Machine Component.

e Specify Variables, Invariants, and Events.
@ Theory Component

e Add new Types, Operators.
o Add new Translation, Re-write Rules etc.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Event-B - Context

... from the Heater Controller Example.

CONTEXT
HC_CONTEXT
CONSTANTS
Max
Min
AXIOMS
axml : Max =
axm2 : Min =
axm3 : Max e
axmé : Min

m
NNUU B

END

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B

MACHINE
HCtrl_Me
SEES
HC_CONTEXT
VARIABLES
hsc V4
nha Va
cttm2 V4
INVARIANTS
typing nha
typing hsc
typing ota
EVENTS
INITIALISATION
BEGIN
act3: hsc
act4: nha
act5: cttm2
END

Edmunds, Rezazadeh, Butle|

Background
Overview of Event-B
Composition / Decomposition

Event-B - Macines, Variables etc.

heat source commanded
no heat alarm
commanded target temp

nha € BOOL
hsc € BOOL
cttm2 € Z

= FALSE
= FALSE

e Z

Formal Modelling for Ada Implementation

Tasking Event-B

Background
Overview of Event-B
Composition / Decomposition

Event-B - Events

-

TurnON_Heat_Source
REFINES
TurnON_Heat_Source
WHEN

// average temp less
grdl: avt < cttm2// than commanded

// value
THEN
actl: hsc = TRUE // Turn heat source on
END

@ Based on guarded command: g — a
o In Event-B, the guard g is an Event-B predicate;
e the action ais an Event-B expression.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Event-B - Event Parameters

>

Sense_Temperatures

ANY t1 t2

WHERE grdl:tl € Z
grd2: t2 e

THEN actl: stml
act2: stm2

i N

tl
t2

END

@ The ANY construct admits parameters:

e Parameters are typed in the Guard;
e but may not be assigned to.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Outline

0 Event-B

@ Composition / Decomposition

Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

Decomposition

Distribute Variables Between Machines

Abstract Machine

Variables

|
|

/ M1 \MZ \ M3

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Background
Overview of Event-B
Composition / Decomposition

Automatic Decomposition

Shared Event Decomposition

MACHINE m,
VARIABLES v

e

MACHINE m ANY o
VARIABLES vI v2 WHERE g (vZ, p)
EVENTS THEN a(v1, p)
o END
ANY p, ¢
WHERE g(vI, v2, p, q)
THENa(vI, v2, p, q) MACHINE m,
END VARTABLES 12
"\ EVENTS
e &
ANY ¢
WHERE g(v2, q)
THEN a(v2, q)

@ Events are Refactored.
@ Synchronization e; || e, models an atomic subroutine call.
@ The Composed Machine is a Refinement.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B Background
Overview of Event-B
Composition / Decomposition

The Heater Controller Development

Heating_Ctrl_MO

Heating_Ctrl_M1

First Level

Decomposition
Environment | | HCtrl_M0O |
Environmentl HCtrl_M1

Second Level

Decomposition l l l

Shared Temperature Ctrl Heater Monitor Display Update
Object Task Task Task

Formal Modelling for Ada Implementations: Tasking Eve

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Outline

e Implementation-Level Modelling
@ Tasking Event-B

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.

@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

@ A Machine’s Task-Body - formally describes the flow of
execution,

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tation-Level Modelling The User Interface: Machine and Event Annotations

Implementation Level Modelling

@ Using ‘Annotated’ Event-B models - Tasking Event-B.
@ Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.

@ A Machine’s Task-Body - formally describes the flow of
execution,

@ is the basis for refinement of the Abstract Development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.
@ Environment Tasks

e simulate the environment,
e or, provide an interface to the environment.
e (to be explored in the Advance project)

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ AutoTask Machines

e map to Controller Task Implementations;
@ anonymous tasks declared in main.

@ Environ Machines
e map to Environment Tasks.
@ Environment Tasks

e simulate the environment,
e or, provide an interface to the environment.
e (to be explored in the Advance project)

@ Shared Machines
e map to Protected Objects in Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
e depends on use in task body.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

e depends on use in task body.
e Some event guards and actions are ‘in-lined’.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P el Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

e depends on use in task body.
e Some event guards and actions are ‘in-lined’.
@ Some events map to 'subroutines’, and are called.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,

@ or, looping/branching statements.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,

@ or, looping/branching statements.

The code generator takes care of this.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

e depends on use in task body.

e Some event guards and actions are ‘in-lined’.

@ Some events map to 'subroutines’, and are called.
o Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

depends on use in task body.

Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:
e Tasking & Shared Machine = protected subprogram/entry .

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
P tion-Level Modelling The User Interface: Machine and Event Annotations

Correspondence with Ada

@ Mapping of events

depends on use in task body.

Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

@ map to entry barriers,
@ or, looping/branching statements.

e The code generator takes care of this.
@ Synchronizations:

e Tasking & Shared Machine = protected subprogram/entry .
e Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modellin)
plementation-Level Modelling The User Interface: Machine and Event Annotations

The Common Language Model

The Common Language Meta-model is independent of the
implementation; an abstraction based on Ada.

Composed
Machine
Refi h
eines Environ cm [f) Ada .)
= Machine 1 Task U Task Simulation Code
=
Abstract Decompose AutoTask oM I Ada
Development Machine Task H Task
=1 AN
Deployable Code
™| Shared o I Ada
Machine Shared H Protected
N

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modelling The User Interface: Machine and Event Annotations

Outline

e Implementation-Level Modelling

@ The User Interface: Machine and Event Annotations

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

| .)
mplementation-Level Modelling The User Interface: Machine and Event Annotations

Ul - Specifying a Task Body

TASKING
@ G 0

<™ @ MACHINETYPE | AutoTask ~ PRIORITY |5 //

<7 TASK TYPE
® 9 JjL

" @ | Periodic ~ | PERIOD 500

Integrated with . oo
@ Machine Editor. < TASK BODY

® ¢

Get_Target Temperaturel ;
Sense_PressIncrease_Target_Temperature ;
1f Ralse_Target_Temperature
. else Ralse_Target_Temperature_Blocked ;
© | Sense_PressDecrease_Target_Temperature ;
if Lower Target Temperature
else Lower_Target_Temperature_Blocked ;
Set_Target_Temperature ;
Display_Target_Temperature

Edmunds, Rezazadeh, Butle Formal Modelling for Ada Implementations: Tasking Event

Tasking Event-B

Implementation-Level Modelling The User Interface: Machine and Event Annotations

Ul - Events

Get_Target_Temperaturel =
COMBINES EVENT
. Shared Object IMPL.Get Target Temperaturel ||
o SynChronlzed Display Update Task IMPL.Get Target Temperaturel
EventS REFINES

Get_Target Temperaturel

Get_Target_Temperaturel =
@ Parameter posttid
DireCtiOﬂS, Get_Target Temperaturel
ANY
in tm
. WHERE
@ Typing. grdl : tmeZ TYPING
THEN
actl : cttml = tm
END

Formal Modelling for Ada Implementations: Tasking Event-B

Tasking Event-B

Implementation-Level Modelling The User Interface: Machine and Event Annotations

Generating Code

|, Event-B Explorer 3 = | @@ ¢ B db © — O |(@ Display_Update Task IMPL ¢
o [t [MACHINE Display_Update Task_IMPL
5 Buffer [Examples/y0.2.3/Buffe A
4 3 Heating_ControllerTutorial2_Completed
@ HC_CONTEXT

@ Heating_Cul5_M1_cmp D REFINES
& HCtrM1_emy

48 decompFile H Open

&% decompFile H Open With »

@ Display_Updat

@ Display_Updat Eropetics

@ Envir Code Generation Translate EventB to Ada

@ Envil @ Retry Auto Provers Translate EventB to C

@ Envinl IMPL Translate EventB to Java

@ Haimo | @ Recalculate Auto Status

@ HCtl ML 45 Proof Replay on Undischarged POs Translate Tasking Events to Event8

@ Heater_Monite
QD Heater Monit
@ Heating_CtlS5
@ Hesting_Ctls
@ Shared_Object
Q) Shared_Object &

Start Animation / Model Checking
ProB Classic .

Rename

Create Composed Machine

Remove Generated EventB

NETYPE AutoTask

@ Temp CtiTo{ v poicee PRIORITY |S| /7
@ Temp_Ctrl_Ta!
T TYPE
4 (= code Simplify Proof(s) -
i
4 & adadefaul pyrge proofs.. P
1] heating_conuunerconon_conmprewcu_gosanous 1 - [periodic =] PERIOD 506

| heating_controllertutorial2_completed_globals.ali
| heating_controllertutorial2_completed_globals.o

5] Heating_ControllerTuterial2_Completed_Main.adb
- s . —TacK anv

+ O

Translation Rules for Ada

Adding New Types, and Translation Rules SRSl AREIE &2 WRe

Outline

e Adding New Types, and Translation Rules
@ Translation Rules for Ada

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules SRSl AREIE &2 WRe

Using Mathematical Extensions

THEORY AdaRules
TRANSLATOR Ada

Metavariables = a € Z, beZ, ceQ, deQ
Translator Rules

trns2: a-bH—>a-b

trns9: c=dH— c=d

trnsl9: a# bk a/=b

trns21: a mod b > a mod b

trns22: =$c = not(%c)

trns23: $c v $d = ($c) or ($d)

trns24: $c A $d > ($c) and ($d)

trns25: $c = $d > not($c) or ($d)
Type Rules

typeTrnsl: z > Integer

typeTrns2: BOOL > boolean

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Outline

e Adding New Types, and Translation Rules

@ Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules SEUIHD I ACEITE & NEw WS

Adding Arrays

THEORY Array
TYPE PARAMETERS T
OPERATORS

earray : array(s:[P(T))
direct definition
array(s : P(T)) = {n,f-n ENAfE 0--(n-1) > s | f}

earrayN : arrayN(n:Z,s:P(T))
well-definedness condition n € N A finite(s)
direct definition

arrayN(n : Z, s : P(T)) = { a | aSarray(s) A card(s)=n }

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules SEUIHD I ACEITE & NEw WS

Theory: Translation Rules for Arrays

eupdate : update(a: ZoT,i:Z,x:T)
elookup : lookup(a:ZeT,i:7)
enewArray : newArray(n:Z,x:T)

TRANSLATOR Ada
Metavariables s €e P(T), n€ Z, a€ Z—T, i €Z, xeT
Translator Rules

trnsl : lookup(a,i) »a(i)
trns2 : a = update(a,i,x) p a(i) :=x
trns3 : newArray(n,x) » (others => x)
Type Rules
typeTrnsl : arrayN(n,s) b array (0..n-1) of s

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada
Adding New Types, and Translation Rules SEUIHD I ACEITE & NEw WS

Theory: Applying the Rules for Arrays

Event-B:
Invariants cbuf € arrayN(maxbuf,Z)
Initialisation cbuf = newArray(maxbuf,®)
type rule : arrayN(n,s) » array (0..n-1) of s
constructor ! newArray(n,x) b (others => x)
z » Integer
Ada:
type cbuf array is array (0..maxbuf-1) of Integer;
cbuf : cbuf array (others => 0);

Formal Modelling for Ada Implementation

: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Wrapping Up

@ Tasking Event-B guides code generation.

@ Event-B modelling artefacts correspond to Ada
counterparts,
e with the Common Language Meta-model; an abstraction of
Ada types.
@ AutoTask machine, Environ machine or Shared machine.

e Task body to specify flow of control;
e with sequence, branch and loop constructs.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Translation Rules for Ada

Adding New Types, and Translation Rules el Gl ARl & B fER

Wrapping Up

@ We make use of the tool-driven decomposition approach,
to structure the development.

e This allows us to partition the system in a modular fashion,
reflecting Ada implementation constructs.

e Decomposition is also the mechanism for breaking up
complex systems to make modelling and proof more
tractable.

@ Data type and operator extensibility.
@ Target Language extensible.

@ Future work:

e The Advance project is ongoing.
e Mindstorms Group Projects.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

	Event-B
	Background
	Overview of Event-B
	Composition / Decomposition

	Implementation-Level Modelling
	Tasking Event-B
	The User Interface: Machine and Event Annotations

	Adding New Types, and Translation Rules
	Translation Rules for Ada
	Example of Adding a New Type

