
Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Formal Modelling for Ada Implementations:
Tasking Event-B

A. Edmunds A.Rezazadeh M. Butler I. Maamria

Department of Electronics and Computer Science
University of Southampton

Ada Europe 2012

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Motivation

Automatic Code Generation from Event-B To Ada,
for Multi-Tasking Embedded Systems.
Modelling of Controllers / Protected, Shared Data and
Environment.
with a stream-lined approach.

Extensibility: add new Types, and their Implementations.
Latest Work:

Gone from from ’demonstrator’ tool to an integrated tool.
Improved static checking.
Perform code generation from Event-B State-machines.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Motivation

Automatic Code Generation from Event-B To Ada,
for Multi-Tasking Embedded Systems.
Modelling of Controllers / Protected, Shared Data and
Environment.
with a stream-lined approach.

Extensibility: add new Types, and their Implementations.
Latest Work:

Gone from from ’demonstrator’ tool to an integrated tool.
Improved static checking.
Perform code generation from Event-B State-machines.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Motivation

Automatic Code Generation from Event-B To Ada,
for Multi-Tasking Embedded Systems.
Modelling of Controllers / Protected, Shared Data and
Environment.
with a stream-lined approach.

Extensibility: add new Types, and their Implementations.
Latest Work:

Gone from from ’demonstrator’ tool to an integrated tool.
Improved static checking.
Perform code generation from Event-B State-machines.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Resources

From the EU funded RODIN, and DEPLOY projects:
http://www.event-b.org/
http://wiki.event-b.org/index.php/Main_Page

Continuing with the Advance project:
http://www.advance-ict.eu/
. . . a unified tool-based framework for automated formal
verification and simulation-based validation of
cyber-physical systems.

Rodin Tools - A new not-for-profit company.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B

Based on Set-Theory + Predicate Logic + Arithmetic,
Tool Support, with Automatic and Interactive proof.
Refinement, for incremental development.

Context Component.
Specify Sets, Constants, and Axioms.

Machine Component.
Specify Variables, Invariants, and Events.

Theory Component
Add new Types, Operators.
Add new Translation, Re-write Rules etc.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B

Based on Set-Theory + Predicate Logic + Arithmetic,
Tool Support, with Automatic and Interactive proof.
Refinement, for incremental development.

Context Component.
Specify Sets, Constants, and Axioms.

Machine Component.
Specify Variables, Invariants, and Events.

Theory Component
Add new Types, Operators.
Add new Translation, Re-write Rules etc.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B

Based on Set-Theory + Predicate Logic + Arithmetic,
Tool Support, with Automatic and Interactive proof.
Refinement, for incremental development.

Context Component.
Specify Sets, Constants, and Axioms.

Machine Component.
Specify Variables, Invariants, and Events.

Theory Component
Add new Types, Operators.
Add new Translation, Re-write Rules etc.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B

Based on Set-Theory + Predicate Logic + Arithmetic,
Tool Support, with Automatic and Interactive proof.
Refinement, for incremental development.

Context Component.
Specify Sets, Constants, and Axioms.

Machine Component.
Specify Variables, Invariants, and Events.

Theory Component
Add new Types, Operators.
Add new Translation, Re-write Rules etc.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B - Context

... from the Heater Controller Example.

CONTEXT
HC_CONTEXT

CONSTANTS
Max
Min

AXIOMS
axm1 : Max = 45
axm2 : Min = 5
axm3 : Max ∈ ℤ
axm4 : Min ∈ ℤ

END

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B - Macines, Variables etc.

MACHINE
HCtrl_M0

SEES
HC_CONTEXT

VARIABLES
hsc // heat source commanded
nha // no heat alarm
cttm2 // commanded target temp
…
INVARIANTS
typing_nha : nha ∈ BOOL
typing_hsc : hsc ∈ BOOL
typing_ota : cttm2 ∈ ℤ
…

EVENTS
INITIALISATION ≙

BEGIN
act3: hsc ≔ FALSE
act4: nha ≔ FALSE
act5: cttm2 :∈ ℤ
…

END

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B - Events

TurnON_Heat_Source ≙
REFINES
TurnON_Heat_Source
WHEN

grd1: avt < cttm2
// average temp less
// than commanded
// value

THEN
act1: hsc ≔ TRUE // Turn heat source on
END

Based on guarded command: g → a
In Event-B, the guard g is an Event-B predicate;
the action a is an Event-B expression.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Event-B - Event Parameters

Sense_Temperatures ≙

ANY t1 t2
WHERE grd1: t1 ∈ ℤ
 grd2: t2 ∈ ℤ
THEN act1: stm1 ≔ t1
 act2: stm2 ≔ t2
END

The ANY construct admits parameters:
Parameters are typed in the Guard;
but may not be assigned to.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Decomposition

Distribute Variables Between Machines

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

Automatic Decomposition

Composed Machine

Shared Event Decomposition

MACHINE m
VARIABLES v1 v2
EVENTS
e ≙
ANY p, q
WHERE g(v1, v2, p, q)
THEN a(v1, v2, p, q)
END

MACHINE mb
VARIABLES v2
EVENTS
eb ≙
ANY q
WHERE g(v2, q)
THEN a(v2, q)
END

MACHINE ma
VARIABLES v1
EVENTS
ea ≙
ANY p
WHERE g(v1, p)
THEN a(v1, p)
END

Events are Refactored.
Synchronization ea ‖ eb models an atomic subroutine call.
The Composed Machine is a Refinement.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Background
Overview of Event-B
Composition / Decomposition

The Heater Controller Development

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Implementation Level Modelling

Using ‘Annotated’ Event-B models - Tasking Event-B.
Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.
A Machine’s Task-Body - formally describes the flow of
execution,
is the basis for refinement of the Abstract Development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Implementation Level Modelling

Using ‘Annotated’ Event-B models - Tasking Event-B.
Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.
A Machine’s Task-Body - formally describes the flow of
execution,
is the basis for refinement of the Abstract Development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Implementation Level Modelling

Using ‘Annotated’ Event-B models - Tasking Event-B.
Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.
A Machine’s Task-Body - formally describes the flow of
execution,
is the basis for refinement of the Abstract Development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Implementation Level Modelling

Using ‘Annotated’ Event-B models - Tasking Event-B.
Specify a task’s priority, and type (periodicity etc.) Formal
modelling of time is in its early stages.
A Machine’s Task-Body - formally describes the flow of
execution,
is the basis for refinement of the Abstract Development.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

AutoTask Machines
map to Controller Task Implementations;
anonymous tasks declared in main.

Environ Machines
map to Environment Tasks.

Environment Tasks
simulate the environment,
or, provide an interface to the environment.
(to be explored in the Advance project)

Shared Machines
map to Protected Objects in Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

AutoTask Machines
map to Controller Task Implementations;
anonymous tasks declared in main.

Environ Machines
map to Environment Tasks.

Environment Tasks
simulate the environment,
or, provide an interface to the environment.
(to be explored in the Advance project)

Shared Machines
map to Protected Objects in Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

AutoTask Machines
map to Controller Task Implementations;
anonymous tasks declared in main.

Environ Machines
map to Environment Tasks.

Environment Tasks
simulate the environment,
or, provide an interface to the environment.
(to be explored in the Advance project)

Shared Machines
map to Protected Objects in Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

AutoTask Machines
map to Controller Task Implementations;
anonymous tasks declared in main.

Environ Machines
map to Environment Tasks.

Environment Tasks
simulate the environment,
or, provide an interface to the environment.
(to be explored in the Advance project)

Shared Machines
map to Protected Objects in Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Correspondence with Ada

Mapping of events
depends on use in task body.
Some event guards and actions are ‘in-lined’.
Some events map to ’subroutines’, and are called.
Guards

map to entry barriers,
or, looping/branching statements.

The code generator takes care of this.
Synchronizations:

Tasking & Shared Machine = protected subprogram/entry .
Tasking & Environ Machine = rendezvous.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

The Common Language Model

The Common Language Meta-model is independent of the
implementation; an abstraction based on Ada.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

UI - Specifying a Task Body

Integrated with
Machine Editor.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

UI - Events

Synchronized
Events

Parameter
Directions.

Typing.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Tasking Event-B
The User Interface: Machine and Event Annotations

Generating Code

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Using Mathematical Extensions

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Outline

1 Event-B
Background
Overview of Event-B
Composition / Decomposition

2 Implementation-Level Modelling
Tasking Event-B
The User Interface: Machine and Event Annotations

3 Adding New Types, and Translation Rules
Translation Rules for Ada
Example of Adding a New Type

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Adding Arrays

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Theory: Translation Rules for Arrays

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Theory: Applying the Rules for Arrays

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Wrapping Up

Tasking Event-B guides code generation.
Event-B modelling artefacts correspond to Ada
counterparts,

with the Common Language Meta-model; an abstraction of
Ada types.

AutoTask machine, Environ machine or Shared machine.
Task body to specify flow of control;
with sequence, branch and loop constructs.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

Event-B
Implementation-Level Modelling

Adding New Types, and Translation Rules

Translation Rules for Ada
Example of Adding a New Type

Wrapping Up

We make use of the tool-driven decomposition approach,
to structure the development.

This allows us to partition the system in a modular fashion,
reflecting Ada implementation constructs.
Decomposition is also the mechanism for breaking up
complex systems to make modelling and proof more
tractable.

Data type and operator extensibility.
Target Language extensible.
Future work:

The Advance project is ongoing.
Mindstorms Group Projects.

Edmunds, Rezazadeh, Butler Formal Modelling for Ada Implementations: Tasking Event-B

	Event-B
	Background
	Overview of Event-B
	Composition / Decomposition

	Implementation-Level Modelling
	Tasking Event-B
	The User Interface: Machine and Event Annotations

	Adding New Types, and Translation Rules
	Translation Rules for Ada
	Example of Adding a New Type

