@RTWM

Deadline-Aware Programming

!'_ and Scheduling

Alan Burns and Andy Wellings

i Real-Time Systems

= Correctness depends on satisfying temporal
requirements as well as functional ones

= This usually takes the form of meeting
deadlines

= Deadlines should therefore be an
abstraction available to the programmer

= Programs should be able to identify and react
to missed deadlines

RTS /5«

i Deadlines

= Key notions
~ Tasks give rise to a sequence of jobs

» Relative deadline, relative to release of a job
from a task, denoted by D

~ Absolute deadline, time by which job must
finish, denoted by d

> d =D + s (start time)

RTS /5«

i Real-Time Scheduling

= With concurrent systems the most effective
way of scheduling tasks is EDF — earliest
deadline first

= This applies to single processor systems, and
multiprocessor systems with static
partitioning

= The run-time must therefore be aware of task
deadlines — and obtain this data from the
program

RTS /5«

Paper’s Contribution

Concurrent programs that share resources
need to utilise an effective sharing protocol

For Fixed Priority scheduling a priority
ceiling protocol (PCP) is usually employed

For EDF, the stack resource policy (SRP) is
the protocol of choice

An alternative protocol has recently been
defined (deadline floor protocol, DFP)

In this paper we consider how DFP can be

supported in Ada RTS/sx

i Priority Inversion

= A well known problem with fixed priority
systems is priority inversion
~ Low priority task locks a resource (a protected
object)
> High priority tasks must wait if they need to
access these locked resources

» Middle priority tasks execute in preference to Low
and hence in preference to High

RTS /5«

i Priority Inheritance

= Solution is to use some form of priority

inheritance such as PCP (Priority Ceiling
Protocol)

~ All protected objects (POs) have ceiling priorities
= Max pri of tasks that use the PO
> When a task accesses a PO its priority is raised to
ceiling
> This reduces inversion, stops deadlocks, provides
mutual exclusion etc

RTS /5«

i Resource Sharing in EDF

= Inversion also occurs with EDF

> Task with short deadline needs resource held by a
task with long deadline

= Standard solution is Stack Resource Policy
(SRP) — this is supported in Ada

RTS /5«

i Stack Resource Policy

= Not going to define this is detail
» Tasks have deadlines and preemption levels

> To preempt, a task must have shorter deadline
and higher preemption level

= Has all the properties of PCP

RTS /5«

i SRP in Ada

= Decided to support SRP with existing
(modified) Locking Policy

>

>

>

EDF is defined to work in a given band of priority

Priority is used for preemption level

By default, the active priority of an EDF task is the lowest
priority in its EDF priority band

A task will inherit priorities; in particular, when an EDF task

executes a protected operation it will inherit the priority
(preemption level) of the protected object

But, for EDF tasks, the ARM must defines a further source of
priority inheritance

RTS /5«

i SRP Rule

= For arbitrary task T it will be assigned the highest
priority P, if any, less than the base priority of T such
that one or more tasks are executing within a
protected object with ceiling priority P and task T has
an earlier deadline than all such tasks; and
furthermore T has an earlier deadline than all other
tasks on ready queues with priorities in the given
EDF_Across_Priorities range that are strictly less than
P

RTS /o«

i SRP Rule

= This is not straightforward
> Initially rule was wrong and had to be modified [24]
» First implementation had an error [15]
> Correct implementation is far from efficient [1]

= So perhaps there is a better way

RTS /5«

i Deadline Floor Protocol

s All tasks have relative deadlines
> deadline is release time + relative deadline

= All POs have relative deadlines

> The minimum of the relative deadlines of tasks
that use the PO

> As minimum is used the protocol is called Deadline

Floor (as it works in the same way as Priority
Ceiling)

> Priority is not used
= All tasks have the same priority

RTS /5«

i Deadline Floor Protocol

= When a task released at time s, with relative
deadline D calls a PO with deadline floor F, at
time t
> d=s+D
> F<D
> § <t

= | hen

> Its current deadline (d) is reduced from (s + D) to (t + F)

RTS /5«

i Deadline Floor Protocol

= When a task released at time s, with relative
deadline D calls a PO with deadline floor F, at
time t
> d=s+D
> F<D
> § <t

= | hen

> Its current deadline (d) is reduced from (s +D) to (t + F)
> Unlesst + F > s + D (in which case there is no change to d)

RTS /5«

—> +

i DFP Properties

= It has been proved that DFP has all the
excellent scheduling properties of PCP and
SRP [7,9]

= [t has been shown to be more efficient to
implement than SRP [1]

= [would argue it is more intuitive and hence
easier to understand

RTS /5«

i Deadlines and DFP in Ada

= All tasks must have a relative deadline assigned via

an aspect/pragma or a routine defined in a library
package

= Protected objects must have also a relative deadline
(floor) assigned via an aspect/pragma

= Default relative deadline values must be defined for
tasks and protected objects (and their types)

RTS /5«

i Deadlines and DFP in Ada

Rules for EDF scheduling must be extended to
include a new locking policy: Floor_Locking

= Rules for EDF scheduling need simplifying to remove
the "across priorities’ feature of the current definition

= For completeness (and parity with priority ceilings)
means of modifying the relative deadline attribute of
tasks and protected objects should be defined

RTS /5«

i Library Packages

= Deadline and relative deadline are
fundamental concepts and should be
supported even if EDF is not used

= We propose a new library package,
Deadlines

RTS /5«

package Ada.Deadlines 1is
subtype Deadline is Real Time.Time;
subtype Relative Deadline is
Real Time.Time Span;

Default Deadline : constant Deadline :=
Real Time.Time Last;
Default Relative Deadline : constant
Relative Deadline :=
Real Time.Time Span Last;

procedure Set Deadline (D : in Deadline;
T : in Task Identification.Task ID :=
Task Identification.Current Task);

function Get Deadline (T : in
Task Identification.Task ID :=
Task Identification.Current Task)
return Deadline;

procedure Set Relative Deadline(R : in
Relative Deadline;
T : in Task Identification.Task ID :=
Task Identification.Current Task);

function Get Relative Deadline(T : in
Task Identification.Task ID :=
Task Identification.Current Task)
return Relative Deadline;

procedure Delay Until And Set Deadline (
Delay Until Time : in Real Time.Time;

TS : in Real Time.Time Span :=
Get Relative Deadline);

end Ada.Deadlines;

i Key Changes

= Change of name and library position

= Introduction of a type for relative deadline
and a default value

s Set and Get routines added for relative
deadlines

= A default relative deadline provided for
Delay Until And Set Deadline

= Aspect/Pragma defined to set initial deadline

and relative deadline of a task
RTS /5«

New Locking Policy

= Whenever a task is executing outside a protected
action, its active deadline is equal to its base deadline

= When a task executes a protected action its active
deadline will be reduced to (if it is currently greater
than) now’ plus the deadline floor of the
corresponding protected object

= When a task completes a protected action its active
deadline returns to the value it had on entry

= When a task calls a protected operation, a check is
made that there is no task currently executing within

the corresponding protected object;
Program Error is raised if this check fails RTS/ix

i New Dispatching Policy

= Currently EDF Across Priorities
= NOw EDF Within Priorities

= In mixed and hierarchical scheduling use both
Ceiling Locking and Floor Locking

= In Ravenscar do not allow changes to relative
deadline

RTS /5«

Programming Template

task type Periodic Task
Period In Milliseconds : Positive;
Rel Deadline In Milliseconds : Positive);

task body Periodic Task is

Interval : Time Span :=
Milliseconds (Period In Milliseconds);
Rel Deadline : Time Span :=
Milliseconds (Rel Deadline In Milliseconds);
Next Release Time : Time;
begin
Set Relative Deadline (Rel Deadline);
Next Release Time := Clock;

Set Deadline (Next Release Time + Rel Deadline);

loop
select
delay until Get Deadline;
—-— handle deadline miss here
then abort
—-— undertake the work of the task
end select;

Next Release Time := Next Release Time + Interval;
Delay Until And Set Deadline (Next Release Time);
end loop;

end Periodic Task;

i Conclusions

Deadlines are key to real-time programs, they should be a
first class abstraction even with priority based scheduling

With EDF scheduling, we argue that DFP is a better protocol
to support than SRP

Ada supports two level scheduling
~ Priority (preemptive or non-preemptive) at the top level
~ FIFO, RR or EDF at secondary level

Previously EDF did not fit this scheme
Now with DFP the clear two level structure is maintained

RTS /5«

i IRTAW 17 (2015)

= Vermont, New York

= Within the week 20-24 April 2015

= Papers (position statements) by 4t Feb 2015
= See call for papers for details

= Participation by invitation only

RTS /5«

