
Deadline-Aware Programming
and Scheduling

Alan Burns and Andy Wellings

Real-Time Systems

 Correctness depends on satisfying temporal
requirements as well as functional ones

 This usually takes the form of meeting
deadlines

 Deadlines should therefore be an
abstraction available to the programmer

 Programs should be able to identify and react
to missed deadlines

Deadlines

 Key notions

 Tasks give rise to a sequence of jobs

 Relative deadline, relative to release of a job
from a task, denoted by D

 Absolute deadline, time by which job must
finish, denoted by d

 d = D + s (start time)

Real-Time Scheduling

 With concurrent systems the most effective
way of scheduling tasks is EDF – earliest
deadline first

 This applies to single processor systems, and
multiprocessor systems with static
partitioning

 The run-time must therefore be aware of task
deadlines – and obtain this data from the
program

Paper’s Contribution
 Concurrent programs that share resources

need to utilise an effective sharing protocol

 For Fixed Priority scheduling a priority
ceiling protocol (PCP) is usually employed

 For EDF, the stack resource policy (SRP) is
the protocol of choice

 An alternative protocol has recently been
defined (deadline floor protocol, DFP)

 In this paper we consider how DFP can be
supported in Ada

Priority Inversion

 A well known problem with fixed priority
systems is priority inversion

 Low priority task locks a resource (a protected
object)

 High priority tasks must wait if they need to
access these locked resources

 Middle priority tasks execute in preference to Low
and hence in preference to High

Priority Inheritance

 Solution is to use some form of priority
inheritance such as PCP (Priority Ceiling
Protocol)

 All protected objects (POs) have ceiling priorities

 Max pri of tasks that use the PO

 When a task accesses a PO its priority is raised to
ceiling

 This reduces inversion, stops deadlocks, provides
mutual exclusion etc

Resource Sharing in EDF

 Inversion also occurs with EDF

 Task with short deadline needs resource held by a
task with long deadline

 Standard solution is Stack Resource Policy
(SRP) – this is supported in Ada

Stack Resource Policy

 Not going to define this is detail

 Tasks have deadlines and preemption levels

 To preempt, a task must have shorter deadline
and higher preemption level

 Has all the properties of PCP

SRP in Ada

 Decided to support SRP with existing
(modified) Locking Policy
 EDF is defined to work in a given band of priority

 Priority is used for preemption level

 By default, the active priority of an EDF task is the lowest
priority in its EDF priority band

 A task will inherit priorities; in particular, when an EDF task
executes a protected operation it will inherit the priority
(preemption level) of the protected object

 But, for EDF tasks, the ARM must defines a further source of
priority inheritance

SRP Rule

 For arbitrary task T it will be assigned the highest
priority P, if any, less than the base priority of T such
that one or more tasks are executing within a
protected object with ceiling priority P and task T has
an earlier deadline than all such tasks; and
furthermore T has an earlier deadline than all other
tasks on ready queues with priorities in the given
EDF_Across_Priorities range that are strictly less than
P

SRP Rule

 This is not straightforward

 Initially rule was wrong and had to be modified [24]

 First implementation had an error [15]

 Correct implementation is far from efficient [1]

 So perhaps there is a better way

Deadline Floor Protocol

 All tasks have relative deadlines

 deadline is release time + relative deadline

 All POs have relative deadlines

 The minimum of the relative deadlines of tasks
that use the PO

 As minimum is used the protocol is called Deadline
Floor (as it works in the same way as Priority
Ceiling)

 Priority is not used

 All tasks have the same priority

Deadline Floor Protocol

 When a task released at time s, with relative
deadline D calls a PO with deadline floor F, at
time t

 d = s + D

 F ≤ D

 s < t

 Then
 Its current deadline (d) is reduced from (s + D) to (t + F)

Example

s

Example

s d

D

Example

s d

t

Example

s d

t

F

Example

s

t

F

d

Deadline Floor Protocol

 When a task released at time s, with relative
deadline D calls a PO with deadline floor F, at
time t

 d = s + D

 F ≤ D

 s < t

 Then
 Its current deadline (d) is reduced from (s +D) to (t + F)

 Unless t + F > s + D (in which case there is no change to d)

Example

s d

t

DFP Properties

 It has been proved that DFP has all the
excellent scheduling properties of PCP and
SRP [7,9]

 It has been shown to be more efficient to
implement than SRP [1]

 I would argue it is more intuitive and hence
easier to understand

Deadlines and DFP in Ada

 All tasks must have a relative deadline assigned via
an aspect/pragma or a routine defined in a library
package

 Protected objects must have also a relative deadline
(floor) assigned via an aspect/pragma

 Default relative deadline values must be defined for
tasks and protected objects (and their types)

Deadlines and DFP in Ada

 Rules for EDF scheduling must be extended to
include a new locking policy: Floor_Locking

 Rules for EDF scheduling need simplifying to remove
the `across priorities’ feature of the current definition

 For completeness (and parity with priority ceilings)
means of modifying the relative deadline attribute of
tasks and protected objects should be defined

Library Packages

 Deadline and relative deadline are
fundamental concepts and should be
supported even if EDF is not used

 We propose a new library package,
Deadlines

package Ada.Deadlines is

 subtype Deadline is Real_Time.Time;

 subtype Relative_Deadline is

 Real_Time.Time_Span;

 Default_Deadline : constant Deadline :=

 Real_Time.Time_Last;

 Default_Relative_Deadline : constant

 Relative_Deadline :=

 Real_Time.Time_Span_Last;

 procedure Set_Deadline(D : in Deadline;

 T : in Task_Identification.Task_ID :=

 Task_Identification.Current_Task);

function Get_Deadline(T : in

 Task_Identification.Task_ID :=

 Task_Identification.Current_Task)

 return Deadline;

procedure Set_Relative_Deadline(R : in

 Relative_Deadline;

 T : in Task_Identification.Task_ID :=

 Task_Identification.Current_Task);

function Get_Relative_Deadline(T : in

 Task_Identification.Task_ID :=

 Task_Identification.Current_Task)

 return Relative_Deadline;

procedure Delay_Until_And_Set_Deadline(

 Delay_Until_Time : in Real_Time.Time;

 TS : in Real_Time.Time_Span :=

 Get_Relative_Deadline);

end Ada.Deadlines;

Key Changes

 Change of name and library position

 Introduction of a type for relative deadline
and a default value

 Set and Get routines added for relative
deadlines

 A default relative deadline provided for
Delay_Until_And_Set_Deadline

 Aspect/Pragma defined to set initial deadline
and relative deadline of a task

New Locking Policy
 Whenever a task is executing outside a protected

action, its active deadline is equal to its base deadline

 When a task executes a protected action its active
deadline will be reduced to (if it is currently greater
than) `now’ plus the deadline floor of the
corresponding protected object

 When a task completes a protected action its active
deadline returns to the value it had on entry

 When a task calls a protected operation, a check is
made that there is no task currently executing within
the corresponding protected object;
Program_Error is raised if this check fails

New Dispatching Policy

 Currently EDF_Across_Priorities

 Now EDF_Within_Priorities

 In mixed and hierarchical scheduling use both
Ceiling_Locking and Floor_Locking

 In Ravenscar do not allow changes to relative
deadline

Programming Template
task type Periodic_Task

 Period_In_Milliseconds : Positive;

 Rel_Deadline_In_Milliseconds : Positive);

task body Periodic_Task is

 Interval : Time_Span :=

 Milliseconds(Period_In_Milliseconds);

 Rel_Deadline : Time_Span :=

 Milliseconds(Rel_Deadline_In_Milliseconds);

 Next_Release_Time : Time;

 begin

 Set_Relative_Deadline(Rel_Deadline);

 Next_Release_Time := Clock;

 Set_Deadline(Next_Release_Time + Rel_Deadline);

loop

 select

 delay until Get_Deadline;

 -- handle deadline miss here

 then abort

 -- undertake the work of the task

 end select;

 Next_Release_Time := Next_Release_Time + Interval;

 Delay_Until_And_Set_Deadline(Next_Release_Time);

end loop;

end Periodic_Task;

Conclusions

 Deadlines are key to real-time programs, they should be a
first class abstraction even with priority based scheduling

 With EDF scheduling, we argue that DFP is a better protocol
to support than SRP

 Ada supports two level scheduling

 Priority (preemptive or non-preemptive) at the top level

 FIFO, RR or EDF at secondary level

 Previously EDF did not fit this scheme

 Now with DFP the clear two level structure is maintained

IRTAW 17 (2015)

 Vermont, New York

 Within the week 20-24 April 2015

 Papers (position statements) by 4th Feb 2015

 See call for papers for details

 Participation by invitation only

