
Deadline-Aware Programming 
and Scheduling 

Alan Burns and Andy Wellings 



Real-Time Systems 

 Correctness depends on satisfying temporal 
requirements as well as functional ones 

 This usually takes the form of meeting 
deadlines 

 Deadlines should therefore be an 
abstraction available to the programmer 

 Programs should be able to identify and react 
to missed deadlines 



Deadlines 

 Key notions 

 Tasks give rise to a sequence of jobs 

 Relative deadline, relative to release of a job 
from a task, denoted by D 

 Absolute deadline, time by which job must 
finish, denoted by d 

 d = D + s (start time) 



Real-Time Scheduling 

 With concurrent systems the most effective 
way of scheduling tasks is EDF – earliest 
deadline first 

 This applies to single processor systems, and 
multiprocessor systems with static 
partitioning 

 The run-time must therefore be aware of task 
deadlines – and obtain this data from the 
program 

 



Paper’s Contribution 
 Concurrent programs that share resources 

need to utilise an effective sharing protocol 

 For Fixed Priority scheduling a priority 
ceiling protocol (PCP) is usually employed 

 For EDF, the stack resource policy (SRP) is 
the protocol of choice 

 An alternative protocol has recently been 
defined (deadline floor protocol, DFP) 

 In this paper we consider how DFP can be 
supported in Ada 



Priority Inversion 

 A well known problem with fixed priority 
systems is priority inversion  

 Low priority task locks a resource (a protected 
object) 

 High priority tasks must wait if they need to 
access these locked resources 

 Middle priority tasks execute in preference to Low 
and hence in preference to High 



Priority Inheritance 

 Solution is to use some form of priority 
inheritance such as PCP (Priority Ceiling 
Protocol) 

 All protected objects (POs) have ceiling priorities 

 Max pri of tasks that use the PO 

 When a task accesses a PO its priority is raised to 
ceiling 

 This reduces inversion, stops deadlocks, provides 
mutual exclusion etc 



Resource Sharing in EDF 

 Inversion also occurs with EDF 

 Task with short deadline needs resource held by a 
task with long deadline 

 Standard solution is Stack Resource Policy 
(SRP) – this is supported in Ada 



Stack Resource Policy  

 Not going to define this is detail 

 Tasks have deadlines and preemption levels 

 To preempt, a task must have shorter deadline 
and higher preemption level 

 Has all the properties of PCP 



SRP in Ada 

 Decided to support SRP with existing 
(modified) Locking Policy 
 EDF is defined to work in a given band of priority 

 Priority is used for preemption level 

 By default, the active priority of an EDF task is the lowest 
priority in its EDF priority band 

 A task will inherit priorities; in particular, when an EDF task 
executes a protected operation it will inherit the priority 
(preemption level) of the protected object 

 But, for EDF tasks, the ARM must defines a further source of 
priority inheritance  

 

 



SRP Rule 

 For arbitrary task T it will be assigned the highest 
priority P, if any, less than the base priority of T such 
that one or more tasks are executing within a 
protected object with ceiling priority P and task T has 
an earlier deadline than all such tasks; and 
furthermore T has an earlier deadline than all other 
tasks on ready queues with priorities in the given 
EDF_Across_Priorities range that are strictly less than 
P 



SRP Rule 

 This is not straightforward 

 Initially rule was wrong and had to be modified [24] 

 First implementation had an error [15] 

 Correct implementation is far from efficient [1] 

 So perhaps there is a better way 



Deadline Floor Protocol 

 All tasks have relative deadlines 

 deadline is release time + relative deadline 

 All POs have relative deadlines 

 The minimum of the relative deadlines of tasks 
that use the PO 

 As minimum is used the protocol is called Deadline 
Floor (as it works in the same way as Priority 
Ceiling) 

 Priority is not used 

 All tasks have the same priority 

 



Deadline Floor Protocol 

 When a task released at time s, with relative 
deadline D calls a PO with deadline floor F, at 
time t 

 d = s + D 

 F ≤ D 

 s < t 

 Then 
 Its current deadline (d) is reduced from (s + D) to (t + F) 



Example 

s 



Example 

s d 

D 



Example 

s d 

t 



Example 

s d 

t 

F 



Example 

s 

t 

F 

d 



Deadline Floor Protocol 

 When a task released at time s, with relative 
deadline D calls a PO with deadline floor F, at 
time t 

 d = s + D 

 F ≤ D 

 s < t 

 Then 
 Its current deadline (d) is reduced from (s +D) to (t + F) 

 Unless t + F > s + D (in which case there is no change to d) 

 



Example 

s d 

t 



DFP Properties 

 It has been proved that DFP has all the 
excellent scheduling properties of PCP and 
SRP [7,9] 

 It has been shown to be more efficient to 
implement than SRP [1] 

 I would argue it is more intuitive and hence 
easier to understand 



Deadlines and DFP in Ada 

 All tasks must have a relative deadline assigned via 
an aspect/pragma or a routine defined in a library 
package 

 Protected objects must have also a relative deadline 
(floor) assigned via an aspect/pragma 

 Default relative deadline values must be defined for 
tasks and protected objects (and their types) 



Deadlines and DFP in Ada 

 Rules for EDF scheduling must be extended to 
include a new locking policy: Floor_Locking 

 Rules for EDF scheduling need simplifying to remove 
the `across priorities’ feature of the current definition 

 For completeness (and parity with priority ceilings) 
means of modifying the relative deadline attribute of 
tasks and protected objects should be defined 

 



Library Packages 

 Deadline and relative deadline are 
fundamental concepts and should be 
supported even if EDF is not used 

 

 We propose a new library package, 
Deadlines 



package Ada.Deadlines is 

  subtype Deadline is Real_Time.Time; 

  subtype Relative_Deadline is   

                        Real_Time.Time_Span; 

 

  Default_Deadline : constant Deadline := 

                        Real_Time.Time_Last; 

  Default_Relative_Deadline : constant   

           Relative_Deadline := 

                 Real_Time.Time_Span_Last; 

 

  procedure Set_Deadline(D : in Deadline; 

     T : in Task_Identification.Task_ID := 

          Task_Identification.Current_Task); 



function Get_Deadline(T : in     

        Task_Identification.Task_ID := 

              Task_Identification.Current_Task)   

        return Deadline; 

 

procedure Set_Relative_Deadline(R : in 

          Relative_Deadline; 

          T : in Task_Identification.Task_ID := 

              Task_Identification.Current_Task); 

 

function Get_Relative_Deadline(T : in     

          Task_Identification.Task_ID :=                                   

               Task_Identification.Current_Task) 

        return Relative_Deadline; 

 

procedure Delay_Until_And_Set_Deadline( 

         Delay_Until_Time : in Real_Time.Time; 

         TS : in Real_Time.Time_Span := 

                      Get_Relative_Deadline); 

 

end Ada.Deadlines; 



Key Changes 

 Change of name and library position 

 Introduction of a type for relative deadline 
and a default value 

 Set and Get routines added for relative 
deadlines 

 A default relative deadline provided for 
Delay_Until_And_Set_Deadline 

 Aspect/Pragma defined to set initial deadline 
and relative deadline of a task 



New Locking Policy 
 Whenever a task is executing outside a protected 

action, its active deadline is equal to its base deadline 

 When a task executes a protected action its active 
deadline will be reduced to (if it is currently greater 
than) `now’ plus the deadline floor of the 
corresponding protected object 

 When a task completes a protected action its active 
deadline returns to the value it had on entry 

 When a task calls a protected operation, a check is 
made that there is no task currently executing within 
the corresponding protected object; 
Program_Error is raised if this check fails 



New Dispatching Policy 

 Currently EDF_Across_Priorities 

 Now EDF_Within_Priorities 

 

 In mixed and hierarchical scheduling use both 
Ceiling_Locking and Floor_Locking 

 

 In Ravenscar do not allow changes to relative 
deadline 



Programming Template 
task type Periodic_Task 

              Period_In_Milliseconds : Positive; 

              Rel_Deadline_In_Milliseconds : Positive); 

 

task body Periodic_Task is 

    Interval : Time_Span :=      

              Milliseconds(Period_In_Milliseconds); 

    Rel_Deadline : Time_Span := 

            Milliseconds(Rel_Deadline_In_Milliseconds); 

    Next_Release_Time : Time; 

  begin 

    Set_Relative_Deadline(Rel_Deadline); 

    Next_Release_Time := Clock; 

    Set_Deadline(Next_Release_Time + Rel_Deadline); 

    



loop 

   select 

     delay until Get_Deadline; 

          -- handle deadline miss here 

     then abort 

          -- undertake the work of the task 

   end select; 

   Next_Release_Time := Next_Release_Time + Interval; 

   Delay_Until_And_Set_Deadline(Next_Release_Time); 

end loop; 

 

end Periodic_Task; 



Conclusions 

 Deadlines are key to real-time programs, they should be a 
first class abstraction even with priority based scheduling 

 With EDF scheduling, we argue that DFP is a better protocol 
to support than SRP 

 Ada supports two level scheduling 

 Priority (preemptive or non-preemptive) at the top level 

 FIFO, RR or EDF at secondary level 

 Previously EDF did not fit this scheme 

 Now with DFP the clear two level structure is maintained 



IRTAW 17 (2015) 

 Vermont, New York 

 Within the week 20-24 April 2015 

 Papers (position statements) by 4th Feb 2015 

 See call for papers for details 

 Participation by invitation only 

 


