Experience in spacecraft on-board software development

Juan A. de la Puente, Alejandro Alonso, Juan Zamorano, Jorge Garrido, Emilio Salazar, Miguel A. de Miguel
aalonso@dit.upm.es

Universidad Politécnica de Madrid
Ada-Europe 2014, Paris, France
Introduction

• **Aim**: Describe on-going work and experiences of STRAST group

• Long time experience in the group:
 ‣ Currently oriented towards mixed-criticality partitioned systems, development tools, real-time kernels, and language features.

• UPMSat-2: **micro-satellite** used for experimenting with technologies and acquiring experience

• Two approaches:
 ‣ **Monolithic**
 ‣ **Partitioned**: FP7 MULTIPartes project (www.multipartes.eu)
1. Introduction to UPMSat2

• Satellite developed at UPM
 ‣ Collaboration with industry: Tecnobit
• Get knowledge and experience on space technology
• Experiment with own technologies:
 ‣ Research, Teaching, Demonstration
• Collaborate with industries in the space domain
 ‣ Payload experiments: Attitude control, solar cell, magnetometer, solar sensors, etc.
• Expected launch in 2015
On-Board Data Handling (OBDH)

- ADCS
- Energy
- Command link
- Separation
- Thermal control
- Data link
- Ground segment
<table>
<thead>
<tr>
<th>ID</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS-3</td>
<td>The system will manage the operating mode of the satellite as defined in the state machine</td>
</tr>
<tr>
<td>PMC-1</td>
<td>The system shall acquire housekeeping data at regular intervals</td>
</tr>
<tr>
<td>PMC-2</td>
<td>Housekeeping data shall be validated with respect to a validity range</td>
</tr>
<tr>
<td>PMC-3</td>
<td>Housekeeping events: variable out of range, sensor error</td>
</tr>
<tr>
<td>ACS-1</td>
<td>Attitude control to be run periodically</td>
</tr>
<tr>
<td>TTC-2</td>
<td>TM messages to be sent when satellite is visible from ground station</td>
</tr>
<tr>
<td>TTC-3</td>
<td>TM messages: State, Housekeeping, Events/Errors, Experiments</td>
</tr>
<tr>
<td>TTC-4</td>
<td>TC should be decoded and executed, either immediately or when programmed</td>
</tr>
<tr>
<td>TTC-5</td>
<td>TC messages: Open link, change mode, change configuration parameter, resend message</td>
</tr>
<tr>
<td>PFC-1</td>
<td>RT behaviour to be defined for: Event and mode control, data acquisition, ADCS, TM&TM</td>
</tr>
</tbody>
</table>
On-Board Computer

• LEON3 processor:
 ‣ SPARC v8 RISC
 ‣ Timers, bus and device controllers
 ‣ Open VHDL model: Synthesized on FPGA

• 4 MB SRAM + 2 MB EEPROM

• 64 analog inputs, 104 digital I/O

• Serial interfaces: RS422, RS232, I2C, SPI

• Developed by TECNOBIT and STRAST/UPM
Architecture Approaches

(a) Monolithic architecture.

(b) Partitioned architecture.
2. UPMSat-2 Development: monolithic

- ESA sw engineering standards for flight missions
- Tools and methods for the flying OBDH:
 - **TASTE** toolset:
 - Supported modeling languages: Simulink, SDL, and uses AADL
 - Generates Ravenscar Ada Code
 - **GNAT Pro** for LEON3 from AdaCore
 - Additional tools like GnatCheck and AUnit
 - Includes an evolution of the ORK kernel (UPM)
 - **RapiTime**: measuring WCET from Rapita Systems
 - Code generation tool for MATLAB / **Simulink** of MathWorks
 - Development of **Ravenscar drivers** for UART, I2C, SPI, FLASH memory, digital inputs/outputs, RTC and ADC.
Software Validation Facility

- Platform for testing control attitude
 - Hardware in the loop
 - System interacts with a simulation of satellite behaviour
- Software MATLAB and Simulink with Toolboxes for Control System and Data Acquisition among others.
- Boards for analog and digital inputs/outputs
OBC Breadboard Model
3. Mixed-Criticality: Partitioned

• Integration of applications of different criticality (safety, security, real-time and non-real time) in a single embedded system

• Key potential benefits:
 ‣ **Complexity management** by means of system partition, segmentation and abstraction
 ‣ **Reduce** number of subsystems
 - reduce overall cost, size, weight and power consumption
 ‣ **Overcome** current scalability limitations
 - Availability of COTS multicore (e.g. P4080) and virtualization technology

• Key challenges:
 ‣ Safety **certification** according to safety standards
 ‣ Temporal **isolation**
3. MultiPARTES Framework:

- Development of mixed-criticality systems.
- Support for non-functional requirements (NFR)
 - Specification, validation, and transformations
 - Real-time, safety, security
- Support for partitioned systems
- Support for multi-core architectures
- System modelling
 - Support legacy applications
- Support for system deployment
Framework Architecture
Software Validation Facility

• Platform for testing control attitude
 ‣ Hardware in the loop
 ‣ System interacts with a simulation of satellite behaviour
Generation of Code Skeletons

• Oriented towards high integrity systems
• Compliant with the Ravenscar profile
• Compliant with: Guide for the use of the Ada programming language in high integrity systems
 ‣ assessment of suitability of language features for analysis techniques
 ‣ does not define a subset of the language
 ‣ helps choice language features depending on the analysis & testing techniques to be used
Periodic task body

```ada
package body <<PackageName>> is

task body Periodic_Task_Type is
    Canceled : Boolean;
    Id       : aliased constant Task_Id := Current_Task;
    WCET_Timer : Ada.Execution_Time.Timers.Timer (Id'Access);

begin
    Initialization;
    delay until Clock + Task_Offset;
    loop
        Ada.Execution_Time.Timers.Set_Handler (WCET_Timer, Task_WCET,
                                            WCET_Ovr_Handler.Handler'Unrestricted_Access);
        Ada.Real_Time.Timing_Events.Set_Handler (Deadline_Overrun,
                                                Clock + Task_Deadline, Deadline_Ovr_Handler.Handler'access);
        Activity;
        Ada.Real_Time.Timing_Events.Cancel_Handler (Deadline_Overrun, Canceled);
        delay until Clock + Task_Period;
    end loop;

end Periodic_Task_Type;

-- Bodies of procedures and protected objects in private part.
...
end <<PackageName>>;
```
Conclusions

- **MDE**: allowed us to raise the abstraction level
 ‣ Desirable more maturity in the used tools

- **Use of TASTE tools**: good experience
 ‣ Allowed testing system design
 ‣ Code generation a bit messy

- **Mixed criticality systems based on partitioning**
 ‣ Great potential
 ‣ Partitioned kernel must be qualified
 ‣ Can support multi-core processors
 ‣ Development of framework for supporting development
 ‣ On-going work