A TASM-based
Requirements Validation
Approach for Safety-critical
Embedded Systems

Jiale (Joe) Zhou
zhou.jiale@mdh.se

School of Innovation, Design and Engineering
Malardalen University, Sweden



Outline

Introduction

Overview Of the Timed Abstract State
Machine (TASM) language

TASM Extension

lllustration Application

The TASM-Based Approach

Conclusion

zhou.jiale@mdh.se



Introduction

eRequirements Validation (RV) is vital

e Continuum of requirements in the systems development life-cycle
eHigh-level requirements describe system features
el ow-level requirements state the system behaviors

e Anomalies can be traced back to requirements specification
e Contradictory or missing requirements
e|nfeasible requirements

oRV confirms the requirements correctness in terms of consistency and
completeness

eConsistency: No internal contradictions

eCompleteness: neither objects nor entities are left undefined, and low-level
requirements can address high-level requirements.

zhou.jiale@mdh.se



Introduction cont’d

o TASM-based approach to requirements validation

e TASM has shown its success with some distinctive features
eFormal specification of behaviors and non-functional properties
oA literate language without requiring mathematical training
e TASM tool in progress

e TASM is extended with newly defined constructs, TASM Event and TASM
Observer

eThree main steps
el ow-level requirements modeling
eHigh-level requirements modeling
eRequirements validation

zhou.jiale@mdh.se



Outline

e[ntroduction

eOverview Of the Timed Abstract State
Machine (TASM) language

e TASM Extension

elllustration Application

eThe TASM-Based Approach

eConclusion

zhou.jiale@mdh.se



Overview Of TASM

oA TASM specification is a pair <, ASM> where:

e E is the environment, which defines
e a set of variables,
e type universe,
e environment resources.
e ASM is the abstract state machine, which defines

e a set of machine rules by using the variables with property annotations.
e The rule body is in the form of “if guard then action” or "else then
action”

zhou.jiale@mdh.se



Overview Of TASM cont’d

TASM toy example

elight switch
ENVIRONMENT:
VARIABLES: MAIN MACHINE:
light_status light := OFF; MONITORED VARIABLES:
switch_status switch := DOWN,; switch;
USER-DEFINED TYPES: CONTROLLED VARIABLES:
light_status := {ON, OFF}; light;
switch_status := {UP, DOWN}; RULES:
RESOURCES: RI:Turn On{
power:=[0, 0] t=1;
power:=[2,5];
if light = OFF and switch = UP then
light := ON; }
R2:Turn Off {
t:= [1,2];
power:=[3,5];
if light = ON and switch = DOWN then
light := OFF; }

zhou.jiale@mdh.se



Outline

e[ntroduction

eOverview Of the Timed Abstract State
Machine (TASM) language

e TASM Extension

elllustration Application

eThe TASM-Based Approach

eConclusion

zhou.jiale@mdh.se



TASM Extension

oThe extension includes two main parts

e TASM Event has four types

e ResourceUsedUpEvent, ChangeValueEvent,
RuleEnableEvent, RuleDisableEvent

e An event instance is generated by corresponding TASM
constructs and will be time stamped.

e TASM Observer is a tuple <OE, L, Ov>

e OFE denotes ObserverEnvironment which consists of
ObserverVariable and EventsFilter,

e L denotes Listener which specifies the observable
scenario in the form of “listening condition then
action’,

—condition is an expression describing the
observable sequence of events
—action updates the observer variables

e Ov denotes Observation which is a predicate of the
TASM model.



e The execution semantics of TASM
Observer

e TASM model produces massive events

e EventsFilter removes the irrelevant
events and log the relevant events into
the local database EventsLog

e Listener will evaluate its condition EventsFilter

based on the logged event sequence.

logged In

e Regular expression is used as the
sequential search pattern. EventslLog

e If the condition is satisfied, the evaluate

observer variables will be updated. = = fF========{r===ssssssssmmmas .
. . Observer
e The Observation will be concluded

based on the updated variables

' 6oRclude
Listener Observation

e A running TASM model can have
several running observers. S

e Offline monitoring



Outline

e[ntroduction

eOverview Of the Timed Abstract State
Machine (TASM) language

e TASM Extension

elllustration Application

eThe TASM-Based Approach

eConclusion

zhou.jiale@mdh.se



lllustration Application

Brake-by-Wire (BbW) system
e A demonstrator at a major automotive company

e BbW aims at replacing the mechanical linkage between
the brake pedal and the brake actuators

High level requirements describe what the BbW
system is required to do

e E.g., the system shall provide a base brake
functionality where the driver indicates that she/he
wants to reduce speed so that the braking system
starts decelerating the vehicle.

Low level requirements describe the behavior of each
component of the BbW system

e E.g., the brake torque calculator shall compute the
driver requested torque and send the value to the
vehicle brake controller, when a brake pedal
displacement is detected.



Outline

e[ntroduction

eOverview Of the Timed Abstract State
Machine (TASM) language

e TASM Extension

elllustration Application

eThe TASM-Based Approach

eConclusion

zhou.jiale@mdh.se



The TASM-based Approach

e OQur approach consists of three main steps
e Step 1: Low-level requirements modeling
e Modeling system behaviors by using TASM
e Step 2: High-level requirements modeling
e Translating system features into TASM observers
e Step 3: Requirements validation

e Performing four kinds of validation checking
— Logical Consistency Checking
—Auxiliary Machine Checking,
—Coverage Checking
—Model Checking



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors

e Five steps

e Requirements preprocessing
e Distinguishing functional requirements from
non-functional requirements



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing

e Components Identification
e Extracting possible system components

e Two sub tasks
» Identification of the external components
» Identification of the internal components



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification

e Connection Identification

e Identifying the connections between components
» Port connection
» Message passing



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification
e Connection Identification

e Behavior Specification

e Specifying the behaviors of components
» Identification of possible states
» Identification of the transition conditions
» Identification of the actions



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification
e Connection Identification

e Behavior Specification

e Property Annotation
e Adding timing and resource consumption annotations



The TASM-based Approach Cont’d

DRIVER External Entity model the driver’s behavior
VEHICLE I External Entity model the behavior of the vehicle
TORQUE_CALC I Micro-controller calculate the driver’s requested torque
BRAKE_ CTRL I Micro-controller calculate the requested torque per wheel

ABS CTRL 4 Micro-controller calculate the brake force on each wheel
BRAKE_ACTU 4 Actuator perform the brake force on each wheel
WHLSPD_SENSOR 4
VCLSPD_SENSOR I Sensor sense the moving speed of the vehicle
PEDAL_SENSOR I Sensor sense the position of the brake pedal

COMMU_BUS I Bus the communication bus

Sensor sense the rotating speed of each wheel

1 Ri:Activationd

2 if ctrl_state=wait and new_event= : B Sample{ _
. True then 2 if sensor_state = sample then
3 ctrl_state := compute; 3 sensor_value := 1 R1:Transmit{
4 new_event := False; <+Measure_Quantity(); 2 if bus_state=idle and new_message
5 } 1 R1l:Triggerd{ 4 sensor_state := send; —=True then
6 R2:Computationd 2 if actu_state=wait and new_event= 5 3 bus_message := Get_Message();
7 t:=computation_time; «+True then ¢ R2:Sendq{ 4 bus_state := engaged;
8 if ctrl_state = compute then 3 new_event := False; 7 if sensor_state = send and 5 }
9 PERFORM_COMPUTATION () ; 4 actu_state := actuate; <ysensor_value >= threshold & R2:Send{
10 ctrl_state := send; 5 } <,then 7 t:=bus_delay;
1n ;3 Send{ 8 Ri:Act:ati?n{ = 8 observer_value := sensor_value 8 band:= bandwidth;
12 roen 7 r=actuatlion_tlme ; . : —
13 if ctrl_state = send then g if actu_state=act:1ate then e L . ° if bus_state = engaged t].len
" SEND_RESULT () ; . PERFORM_ACTUATION () ; 9 new_sample_value:= Trl'le ; 10 TRANSMITTING_I-IESSAGE O
15 e s 10 R 10 sensor_state 1= wait; 11 bus_state := idle;
16 } 11} 1} 12 }
17 R4:Idle{ 12 R3:Idle{ 12 R3:Wait{ 13 R3:Wait{
18 t := next; 13 t:= next; 13 t := period; 14 t := next;
19 else then 14 else then 14 if sensor_state = wait then 15 else then
20 skip; 15 skip; 15 sensor_state := sample; 186 skip;

21 } 16 } 16 } 17 }



The TASM-based Approach Cont’d

Step 2: High-level requirements modeling
e Formalizing the system features

e Four steps

e Listener Specification
e Specifying the possible events sequence representing the
observable scenario,
e Relevant observer variables will be updated if observed.



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features
e Four steps

e Listener Specification

e Observation Specification
e Formalizing a predicate depending on the observer variables



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features
e Four steps
e Listener Specification
e Observation Specification

e Events Filtering
e Identifying the irrelevant events to the observable properties



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features

e Four steps
e Listener Specification
e Observation Specification
e Events Filtering

e Traceability Creation
e Linking the specified Observer to the textual requirements



The TASM-based Approach Cont’d

e E.g., the system shall provide a base brake functionality
where the driver indicates that she/he wants to reduce speed
so that the braking system starts decelerating the vehicle.

ObserverVariables:{
Boolean ov := false;
}
EventsFilter:{
filter out: ChangeValueEvent, ResourceUsedUpEvent, RuleDisableEvent;
}
Listener:{
listening PEDAL_SENSOR->Send->RuleEnableEvent .* BRAKE_ACTU->Actuation->
-+RuleEnableEvent then

ov := true;
}
Observation:{
ov == true;

}



The TASM-based Approach Cont’d

oStep 3: Requirements validation
e Logical Consistency Checking

e Free of contradictions in the specification
— Different machine rules are simultaneously enabled
— Different values are assigned to the same variable simultaneously

e Auxiliary Machine Checking
e Free of undefined auxiliary machine
e Coverage Checking

e Checking whether all of the system features can be observed in the
system behaviors model

e Model Checking
e Free of deadlock

e Checking whether system features are satisfied by the system
behaviors model



The TASM-based Approach Cont’d

For the BbW system, the undefined auxiliary machine are
found, which indicates the incompleteness of the BbW system
requirements



Outline

Introduction

Overview Of the Timed Abstract State
Machine (TASM) language

TASM Extension

lllustration Application

The TASM-Based Approach

Conclusion

zhou.jiale@mdh.se



Conclusion

eWe have proposed a TASM-based approach to requirements validation
eWe have extended the TASM language with TASM Event and TASM Observer
constructs

oOur illustration application, namely the Brake-by-Wire system, shows that our
approach can achieve the goal of requirements validation via

eLogical Consistency Checking
e Auxiliary Machine Checking
eCoverage Checking
eModel Checking
eFuture work
eWider industrial validation of our approach
eThe improvement of our TASM toolset

e Offline -> online
eDiscussion about the concept of “observable”

zhou.jiale@mdh.se



Thank You !
Tack !

zhou.jiale@mdh.se



