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Introduction

eRequirements Validation (RV) is vital

e Continuum of requirements in the systems development life-cycle
eHigh-level requirements describe system features
el ow-level requirements state the system behaviors

e Anomalies can be traced back to requirements specification
e Contradictory or missing requirements
e|nfeasible requirements

oRV confirms the requirements correctness in terms of consistency and
completeness

eConsistency: No internal contradictions

eCompleteness: neither objects nor entities are left undefined, and low-level
requirements can address high-level requirements.
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Introduction cont’d

o TASM-based approach to requirements validation

e TASM has shown its success with some distinctive features
eFormal specification of behaviors and non-functional properties
oA literate language without requiring mathematical training
e TASM tool in progress

e TASM is extended with newly defined constructs, TASM Event and TASM
Observer

eThree main steps
el ow-level requirements modeling
eHigh-level requirements modeling
eRequirements validation
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Overview Of TASM

oA TASM specification is a pair <, ASM> where:

e E is the environment, which defines
e a set of variables,
e type universe,
e environment resources.
e ASM is the abstract state machine, which defines

e a set of machine rules by using the variables with property annotations.
e The rule body is in the form of “if guard then action” or "else then
action”
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Overview Of TASM cont’d

TASM toy example

elight switch
ENVIRONMENT:
VARIABLES: MAIN MACHINE:
light_status light := OFF; MONITORED VARIABLES:
switch_status switch := DOWN,; switch;
USER-DEFINED TYPES: CONTROLLED VARIABLES:
light_status := {ON, OFF}; light;
switch_status := {UP, DOWN}; RULES:
RESOURCES: RI:Turn On{
power:=[0, 0] t=1;
power:=[2,5];
if light = OFF and switch = UP then
light := ON; }
R2:Turn Off {
t:= [1,2];
power:=[3,5];
if light = ON and switch = DOWN then
light := OFF; }
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TASM Extension

oThe extension includes two main parts

e TASM Event has four types

e ResourceUsedUpEvent, ChangeValueEvent,
RuleEnableEvent, RuleDisableEvent

e An event instance is generated by corresponding TASM
constructs and will be time stamped.

e TASM Observer is a tuple <OE, L, Ov>

e OFE denotes ObserverEnvironment which consists of
ObserverVariable and EventsFilter,

e L denotes Listener which specifies the observable
scenario in the form of “listening condition then
action’,

—condition is an expression describing the
observable sequence of events
—action updates the observer variables

e Ov denotes Observation which is a predicate of the
TASM model.



e The execution semantics of TASM
Observer

e TASM model produces massive events

e EventsFilter removes the irrelevant
events and log the relevant events into
the local database EventsLog

e Listener will evaluate its condition EventsFilter

based on the logged event sequence.

logged In

e Regular expression is used as the
sequential search pattern. EventslLog

e If the condition is satisfied, the evaluate

observer variables will be updated. = = fF========{r===ssssssssmmmas .
. . Observer
e The Observation will be concluded

based on the updated variables

' 6oRclude
Listener Observation

e A running TASM model can have
several running observers. S

e Offline monitoring
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lllustration Application

Brake-by-Wire (BbW) system
e A demonstrator at a major automotive company

e BbW aims at replacing the mechanical linkage between
the brake pedal and the brake actuators

High level requirements describe what the BbW
system is required to do

e E.g., the system shall provide a base brake
functionality where the driver indicates that she/he
wants to reduce speed so that the braking system
starts decelerating the vehicle.

Low level requirements describe the behavior of each
component of the BbW system

e E.g., the brake torque calculator shall compute the
driver requested torque and send the value to the
vehicle brake controller, when a brake pedal
displacement is detected.
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The TASM-based Approach

e OQur approach consists of three main steps
e Step 1: Low-level requirements modeling
e Modeling system behaviors by using TASM
e Step 2: High-level requirements modeling
e Translating system features into TASM observers
e Step 3: Requirements validation

e Performing four kinds of validation checking
— Logical Consistency Checking
—Auxiliary Machine Checking,
—Coverage Checking
—Model Checking



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors

e Five steps

e Requirements preprocessing
e Distinguishing functional requirements from
non-functional requirements



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing

e Components Identification
e Extracting possible system components

e Two sub tasks
» Identification of the external components
» Identification of the internal components



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification

e Connection Identification

e Identifying the connections between components
» Port connection
» Message passing



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification
e Connection Identification

e Behavior Specification

e Specifying the behaviors of components
» Identification of possible states
» Identification of the transition conditions
» Identification of the actions



The TASM-based Approach Cont’d

oStep 1: Low-level requirements modeling
e Modeling the system behaviors
e Five steps

e Requirements preprocessing
e Components Identification
e Connection Identification

e Behavior Specification

e Property Annotation
e Adding timing and resource consumption annotations



The TASM-based Approach Cont’d

DRIVER External Entity model the driver’s behavior
VEHICLE I External Entity model the behavior of the vehicle
TORQUE_CALC I Micro-controller calculate the driver’s requested torque
BRAKE_ CTRL I Micro-controller calculate the requested torque per wheel

ABS CTRL 4 Micro-controller calculate the brake force on each wheel
BRAKE_ACTU 4 Actuator perform the brake force on each wheel
WHLSPD_SENSOR 4
VCLSPD_SENSOR I Sensor sense the moving speed of the vehicle
PEDAL_SENSOR I Sensor sense the position of the brake pedal

COMMU_BUS I Bus the communication bus

Sensor sense the rotating speed of each wheel

1 Ri:Activationd

2 if ctrl_state=wait and new_event= : B Sample{ _
. True then 2 if sensor_state = sample then
3 ctrl_state := compute; 3 sensor_value := 1 R1:Transmit{
4 new_event := False; <+Measure_Quantity(); 2 if bus_state=idle and new_message
5 } 1 R1l:Triggerd{ 4 sensor_state := send; —=True then
6 R2:Computationd 2 if actu_state=wait and new_event= 5 3 bus_message := Get_Message();
7 t:=computation_time; «+True then ¢ R2:Sendq{ 4 bus_state := engaged;
8 if ctrl_state = compute then 3 new_event := False; 7 if sensor_state = send and 5 }
9 PERFORM_COMPUTATION () ; 4 actu_state := actuate; <ysensor_value >= threshold & R2:Send{
10 ctrl_state := send; 5 } <,then 7 t:=bus_delay;
1n ;3 Send{ 8 Ri:Act:ati?n{ = 8 observer_value := sensor_value 8 band:= bandwidth;
12 roen 7 r=actuatlion_tlme ; . : —
13 if ctrl_state = send then g if actu_state=act:1ate then e L . ° if bus_state = engaged t].len
" SEND_RESULT () ; . PERFORM_ACTUATION () ; 9 new_sample_value:= Trl'le ; 10 TRANSMITTING_I-IESSAGE O
15 e s 10 R 10 sensor_state 1= wait; 11 bus_state := idle;
16 } 11} 1} 12 }
17 R4:Idle{ 12 R3:Idle{ 12 R3:Wait{ 13 R3:Wait{
18 t := next; 13 t:= next; 13 t := period; 14 t := next;
19 else then 14 else then 14 if sensor_state = wait then 15 else then
20 skip; 15 skip; 15 sensor_state := sample; 186 skip;

21 } 16 } 16 } 17 }



The TASM-based Approach Cont’d

Step 2: High-level requirements modeling
e Formalizing the system features

e Four steps

e Listener Specification
e Specifying the possible events sequence representing the
observable scenario,
e Relevant observer variables will be updated if observed.



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features
e Four steps

e Listener Specification

e Observation Specification
e Formalizing a predicate depending on the observer variables



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features
e Four steps
e Listener Specification
e Observation Specification

e Events Filtering
e Identifying the irrelevant events to the observable properties



The TASM-based Approach Cont’d

oStep 2: High-level requirements modeling
e Formalizing the system features

e Four steps
e Listener Specification
e Observation Specification
e Events Filtering

e Traceability Creation
e Linking the specified Observer to the textual requirements



The TASM-based Approach Cont’d

e E.g., the system shall provide a base brake functionality
where the driver indicates that she/he wants to reduce speed
so that the braking system starts decelerating the vehicle.

ObserverVariables:{
Boolean ov := false;
}
EventsFilter:{
filter out: ChangeValueEvent, ResourceUsedUpEvent, RuleDisableEvent;
}
Listener:{
listening PEDAL_SENSOR->Send->RuleEnableEvent .* BRAKE_ACTU->Actuation->
-+RuleEnableEvent then

ov := true;
}
Observation:{
ov == true;

}



The TASM-based Approach Cont’d

oStep 3: Requirements validation
e Logical Consistency Checking

e Free of contradictions in the specification
— Different machine rules are simultaneously enabled
— Different values are assigned to the same variable simultaneously

e Auxiliary Machine Checking
e Free of undefined auxiliary machine
e Coverage Checking

e Checking whether all of the system features can be observed in the
system behaviors model

e Model Checking
e Free of deadlock

e Checking whether system features are satisfied by the system
behaviors model



The TASM-based Approach Cont’d

For the BbW system, the undefined auxiliary machine are
found, which indicates the incompleteness of the BbW system
requirements
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Conclusion

eWe have proposed a TASM-based approach to requirements validation
eWe have extended the TASM language with TASM Event and TASM Observer
constructs

oOur illustration application, namely the Brake-by-Wire system, shows that our
approach can achieve the goal of requirements validation via

eLogical Consistency Checking
e Auxiliary Machine Checking
eCoverage Checking
eModel Checking
eFuture work
eWider industrial validation of our approach
eThe improvement of our TASM toolset

e Offline -> online
eDiscussion about the concept of “observable”
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