
Maintenance of Reliable Distributed
Applications with Open Source
Middleware: Fifteen years later

Manuel Díaz, Daniel Garrido

UNIVERSIDAD
DE MÁLAGA

Index

Introduction
Background
CORBA Overview
Maintenance Experiences
Patching the middleware
Improving performance
Conclusions

2

Introduction

Maintenance of critical applications
Long life cycle (several years)
An important choice

Hardware
Software

No real data available for new technologies
Technologies are constantly evolving

At the beginning of the previous decade
Middleware as a promising technology

CORBA, Java-RMI, DCOM
CORBA to solve all heterogeneity problems

Different languages, operating systems, platforms
RT-CORBA, FT-CORBA and Minimum CORBA

3

Introduction

Advantages
Some complexity is hidden by the middleware

Low level details
Network complexity

Better interoperability
Focus on functionality

Disadvantages
The middleware has the “control” of the application
We depend on the middleware and its updates
How can this affect the maintenance? (specially how it
affects software reliability)

Changes in operating system, languages, patches, …

4

Introduction

Current situation
CORBA is not as popular as expected

Several reasons
  Internet (Web services, REST, …)
  New languages and platforms (e.g. C#, .NET)
  Not widely accepted by the industry and users (learning
curve)
 A niche in several sectors: telecommunications, defense,
simulation, …

But, some projects have already started…
And they are being exploited

24/7
Two possibilities

To change technologies
  But to change is not always a possibility

Maintenance activities
5

Background

Development of applications and communications
UML, software components and CORBA

Joint projects with several companies
UM-RTCOM was presented

RT-CORBA based
Component model
Real-time support
Higher abstraction level
Some experiences

Distributed simulators with soft real-time constraints
SMEPP European Project

Two principally used CORBA implementations
TAO (C++)
JacORB (Java)

6

Client
IDL Stubs Client

IDL Stubs

Static

Skeletons

Static

Skeletons

Object
Adapter Object

Adapter

CORBA Overview
General CORBA Architecture

ORB
Interface

Dynamic
Skeleton

Invocation

Static

Skeletons

Object Implementation

Server

Client
IDL Stubs

Dynamic
Invocation

Client

Object Request Broker Core (IIOP)

Interface

Repository

7

CORBA Overview

Last CORBA version
3.3, November 2012

Many CORBA implementations are currently active (free
and commercial)

TAO
JacORB
Orbix, Orbacus, …
Java SDK implementation

New languages have been added to CORBA
Python, Ruby

8

Maintenance Experiences

9

Main milestones:
-  Windows Vista
-  C#/.NET
-  64 bits

Maintenance Experiences

10

0

50

100

150

200

250

TAO JacORB

Decreasing activity over
the last few years
A significant number of
bugs remain
Latest TAO version
(2.3.2)

May 2015

Latest JacORB version
(3.6.1)

May 2015

Number of bugs
fixed 1999-2014

Maintenance Experiences

11

TAO active bugs
(end 2014)

0 2 4 6 8

DynAny
IDL compiler

Implementation
Interface Repository
Notification Service

ORB
SSL/IIOP

JacORB active bugs
(end 2014)

Maintenance Experiences

12

But, when a change is required or
a fault is detected…

ACE+TAO 6.3.1 and JacORB metrics

 Files Lines Statements Class Defs
ACE+TAO 22,915 1,859,251 616,530 8,078

JacORB 2,138 300,129 115,547 2,532

TAO and JacORB philosophy:
•  Bugzilla: bug tracking system
•  Users can contribute with solutions
 and improvements

Alternatively
: commercial

support
(OCI,

Remedy IT)

Maintenance Experiences

What about testing?
Automatic testing is supported

More than 1,000 tests are included with ACE+TAO
Different categories

  ACE
  TAO
  ORB services

But this is not enough in critical systems

13

Maintenance Experiences

Improvements over time
Service orientation is the new trend
Heterogeneity is a fact
Communication very well encapsulated
Dynamism
Performance
Reliability
Scalability

Different kind of changes
Patching the middleware
Improving performance

TAO is very extensible and configurable
Several design patterns
Many configuration options

14

Maintenance Experiences

Improvement performance (multicast)
MIOP/UIPMC protocols

15

dynamic UIPMC_Factory
Service_Object *
TAO_PortableGroup:_make
_TAO_UIPMC_Protocol_Fa
ctory()
"-ORBListenOnAll 0
-ORBListenerInterfaces
224.1.239.2=192.168.20.13
5"

Maintenance Experiences

Improvement scalability
(concurrency control)

On the server side:
ORB controlled model:
requests are attended to in
the order specified by the
ORB.
Single thread model.

On the client side:
Leader-follower: while waiting,
client threads can be reused to
process other requests.
Reactive: thread provided by
the TAO Reactor
Blocking: the client is blocked
until the connection finishes.

16

Deadlock
problems with
nested upcalls

Patching the middleware
Customer request: “When using IPv6 multicast
addresses in a PC equipped with multiple network cards,
TAO ignores user preferences and it always uses the
first network interface. In addition, we have a strange
message”
TAO configuration says: user can select in which
network interface requests are attended.
“for a machine with two network cards identified by the ip
addresses 192.168.1.10 and 192.168.1.20, you can use the
s i n g l e d i r e c t i v e - O R B L i s t e n e r I n t e r f a c e s
239.255.*=*10,224.255.*=*20…”

17

192.168.1.10

192.168.1.20

239.255.0.1

239.255.0.2

Patching the middleware

How the problem was detected…
TAO logs showed user preferences, but these logs were
 false!
Netstat –g shows which network interface was really used

Where we should look for… several candidates
ACE sockets
TAO protocols
Configuration
Experiences with TAO helps a little, but a slow process

18

Patching the middleware

What we found…
A “strange” error message related to IPv6 addresses

"ACE_INET_Addr::get_ip_address: address is a IPv6
address not IPv4“
Reason: call to addr.get_ip_address (), method only
available for IPv4
We detected unused code. In fact, two operations can be
removed from ACE+TAO
  ACE_UINT32 uint_ip_addr (void) const;
  void uint_ip_addr (ACE_UINT32 ip_addr);

Second step: when this code was removed, we obtained
a “core”. Reason:

Buffer sizes when using IPv6 string addresses
  A constant (MAX_ADDR_LENGTH) was defined with size 32,
which is not valid for IPv6 address. An example:
  2001:0db8:85a3:0042:1000:8a2e:192.168.158.190

19

Patching the middleware

What else?
When these problems were solved, the user configuration
continued to be ignored
Reason: TAO can use the following configuration syntax:

./server -ORBId ORB_LAN_1 -
ORBAllowZIOPNoServerPolicies 1 -ORBListenEndpoints
iiop://[2001:db8:0:f101::1] -ORBPreferredInterfaces
*=eth2 -ORBEnforcePreferredInterfaces 1 -ORBDebugLevel
10

Network interface is selected using “=interface_name”
Finally, we found…

20

Patching the middleware

int ACE_SOCK_Dgram::make_multicast_ifaddr6 (ipv6_mreq
*ret_mreq, const ACE_INET_Addr &mcast_addr,
 const ACE_TCHAR *net_if)
{
...
lmreq.ipv6mr_interface =
ACE_OS::if_nametoindex(ACE_TEXT_ALWAYS_CHAR(net_if));
…
}

ACE_OS::if_nametoindex calls the standard function
if_nametoindex(), that returns the index of the network
interface corresponding to the name ifname
TAO was using “if=ethX” as name of the network
interface!!!

•  When this code was changed, Voilà! It worked

21

Improving performance

Some improvements can be applied to the code
in order to get a better performance
The following is ongoing work
Customer request: CORBA sequences
performance does not seem to be very
efficient. The memset function is intensively
used.

22

Improving performance

IDL CORBA test interface:

module MyModule {
 const long MSG_MAX_DATA_SIZE=52428800;
 typedef sequence<string,MSG_MAX_DATA_SIZE>

 ByteSequence;
 valuetype mivaluetype {

 public ByteSequence data;
 };

 interface Basic {
 void receivevt(in any vt);
 void shutdown();
 };
};

23

Improving performance

Client fragment:
 OBV_MyModule::mivaluetype msg;
 CORBA::Any miany;

 miany <<= &msg;

 for(int i=0;i<100; i++) {
 tst->receivevt(miany);
 }

Servant fragment
void basic_i::receivevt (const CORBA::Any &vt) {
 MyModule::mivaluetype *msg;
 vt >>= msg;
}

24

Improving performance

What valgrind and callgrind tools say:
3,145,730,764 ???:CORBA::string_free(char*) [/home/
dgarrido/ACE_wrappers/TAO/tao/libTAO.so.2.3.2]
2,621,440,370 ???:OBV_mimodulo::mivaluetype::~mivaluetyp
e()'2 [/home/dgarrido/src/secuencias_ms/server]
 393,222,493 ???:__GI_memset [/lib64/libc-2.12.so]

Reason: a myriad of C++ templates defining other
templates, using templates, …. Very hard to read!
Finally, a memset operation is performed

What will happen with this? The memset function is
expected to be very efficient

25

Improving performance

Problem: when the sequence is extracted in the servant, the
memset function is called using the MAXIMUM size of the
sequence without taking into account the actual sequence
length (even when the actual length is zero!)

 inline static void zero_range(
 char_type ** begin, char_type ** end)
 {
 ACE_OS::memset (begin, 0, (end - begin) * sizeof

 (char_type*));
 }

And this is a very costly operation when repeated several
times per second with a huge buffer

26

Conclusions

Fifteen years of experiences using open-source
middleware
Not a bad experience
The importance of the choice

Changes in operating system, languages, platform
New trends in middleware technology

Data Distribution Service (OMG)
Publish-subscribe mechanism
Not very novel (from 2003!), but the life cycle of critical
applications seem different from other kinds of applications

27

