
Introduction
Programmer’s interface

Implementation
Closing remarks

Ouverture

Persistent objects form a general and very useful method for
storing internal program data between executions of a program.

This presentation is focused on Ada 2012 style containers
backed by a memory mapped file.

The persistent containers allow an application programmer to
make objects stored in a container persistent with only small
modifications to the source text of the application.

The performance and reliability of the implementation is
compared with serialisation and with persistent storage pools,
and future improvements are discussed.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Persistent Containers with Ada 2012

Jacob Sparre Andersen

JSA Research & Innovation

The 20th International Conference on Reliable Software
Technologies – Ada-Europe 2015

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Orthogonal persistence
Project history
Ideas

Who wouldn’t want easy orthogonal persistence?

O : T with Persistent, Storage => ...;

Unfortunately this is not quite Ada.

But this is possible:

with Ada.Containers.Persistent.Sets;
...

A_Persistent_Set.Insert (O);

This is legal Ada. – And with a small, fixed overhead it is
enough to give us persistent objects.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Orthogonal persistence
Project history
Ideas

Who wouldn’t want easy orthogonal persistence?

O : T with Persistent, Storage => ...;

Unfortunately this is not quite Ada.

But this is possible:

with Ada.Containers.Persistent.Sets;
...

A_Persistent_Set.Insert (O);

This is legal Ada. – And with a small, fixed overhead it is
enough to give us persistent objects.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Orthogonal persistence
Project history
Ideas

A bit of project history. . .

The work presented here is the result of reviewing “An Efficient
Implementation of Persistent Objects” (2010) with two things in
mind:

Benefiting from new features of Ada 2012.
Avoiding the conflict with address space layout
randomisation inherent in my earlier work on the subject.

This presentation is a summary of my paper in Ada User
Journal 36.2.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Orthogonal persistence
Project history
Ideas

The ideas. . .

Ada would benefit from an easy-to-use persistence facility.
Memory-mapping is an extremely efficient I/O method.
Ada 2012 style containers is a much more
programmer-friendly way of storing objects than explicitly
allocating them on a storage pool.

. . . and trying to solve the problem within the language, without
having to modify the compiler.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Orthogonal persistence
Project history
Ideas

Combining the ideas. . .

Combining these ideas gives us a container, which allocates
space for its contents in a part of virtual memory which is
mapped to a file, and thus automatically stored.

Using a persistent container or one of the containers declared
under Ada.Containers only differs in the call to bind the
container to its backing file, making this technique very easy to
use.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Storage association
Making objects persistent
Manipulating persistent objects

An example

A persistent container package is instantiated just like an
equivalent package in the standard library:

with Persistent_Containers.Linked_List;

package Character_List is
new Persistent_Containers.Linked_List (Element_Type

=> Character);

Declaring a container and associating it with a file:

List : Character_List.Instance;
begin

List.Open_Or_Create (Name => Name,
Minimum_Size => Minimum_Size);

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Storage association
Making objects persistent
Manipulating persistent objects

An example (continued)

We can check if the list is empty:

if List.Is_Empty then

And append objects if it is:

Insert_Test_Data :
for C of Test_Data loop

List.Append (New_Item => C);
end loop Insert_Test_Data;

end if;

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Storage association
Making objects persistent
Manipulating persistent objects

An example (continued)

We can manipulate the objects contained in the list:

ASCII_Caesar_Code :
for C of List loop

C := Character’Succ (Character’Succ (Character’
Succ (C)));

end loop ASCII_Caesar_Code;

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Storage association
Making objects persistent
Manipulating persistent objects

An example (continued)

If we print the contents of the list after updating them;
Iterate :
for C of List loop

Ada.Text_IO.Put (C);
end loop Iterate;

then the output will be different (shifted three character values)
every time we run the program:
% ./bin/example
Ghfhpehu#43wk#4;48
% ./bin/example
Jkikshkx&76zn&7>7;
% ./bin/example
Mnlnvkn{):9}q):A:>

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Faster I/O

Quoting the POSIX specification of the function “mmap”:

The mmap() function shall establish a mapping
between a process’ address space and a file. . .

Essentially the mapped file is assigned as swap space to its
part of the process’ address space. This gives us the possibility
of saving some copying between disk and RAM; if the operating
system for example already has “swapped” the file to disk,
saving the data has zero cost – they are already in the file.

The big value of using memory mapping is this saving in
physical copying of data between disk and RAM.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Limitations

The cost of using memory mapping is that we can’t handle
objects containing absolute memory addresses (such as
System.Address and access types).

Other persistent implementations have the option of “flattening”
structures of objects using access types for inter-object
reference.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Slower access

Address space layout randomisation1 has effectively made this
version of Map_Memory unusable:

function Map_Memory
(First : System.Address;
Length : System.Storage_Elements.

Storage_Offset;
Protection : Protection_Options;
Mapping : Mapping_Options;
Location : Location_Options;
File : POSIX.IO.File_Descriptor;
Offset : POSIX.IO_Count)
return System.Address;

1An operating system feature introduced to limit the damage of buffer
overflows in C.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Slower access (continued)

Address space layout randomisation means that you have to let
the operating system decide where in virtual memory the file
will be mapped.

This again means that you have to work with relative addresses
in a memory mapped file.

Which again introduces an overhead on practically all
operations on a container stored in a memory mapped file.

:-(

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Relatively addressed, persistent heap

Between the memory mapped files and the persistent
containers, there is a persistent heap addressed with relative
addresses such that it does not matter where in the virtual
memory the backing file is mapped to.

The Persistent_Heap package interfaces with the POSIX
API to map and unmap the backing file. It contains a generic
package, parameterised with an Element_Type for allocating
objects on the heap, accessing the “root object” on the heap,
and turning relative heap addresses into Ada 2012 style
reference objects with an Implicit_Dereference aspect.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Persistent containers

The demonstration implementation of a persistent linked list
container primarily differs from any other linked list
implementation written in Ada in how new, .all, access and
’Access have been substituted with the equivalent operations
and types from the Persistent_Heap package;

new→ Operations.Allocate,
.all→ Operations.Element,
access→ Operations.Reference_Type.
’Access→ Operations.Reference_Type.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Example: procedure Prepend

procedure Prepend (Container : in out Instance;
New_Item : in Element_Type)

is
begin

if Container.Heap.Is_Open then
declare

New_Node : constant Node_Operations.
Reference_Type

:= Node_Operations.Allocate (Container.
Heap);

begin
New_Node := Node_Type’(Element => New_Item,

Next => Header (
Container).First)
;

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Example: procedure Prepend (continued)

Header (Container).First := New_Node.Address
;

Header (Container).Length := Header (
Container).Length + 1;

end;
else

raise Constraint_Error with "Prepend: Container
has no file backing.";

end if;
end Prepend;

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Timing experiments

I+M+W Insert test data into a linked list, modify it and write it to
persistent storage.

L+W Load an existing linked list from persistent storage (disk)
and write it again.

L+M+W Load an existing linked list from persistent storage (disk),
modify it and write back to persistent storage.

Experiment Baseline Persistent containers
I + M + W 0.685 1.000

L + W 0.376 0.004
L + M + W 0.705 0.390

M = (L + M + W )− (L + W ) 0.329 0.386

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 30 40 50 60 70 80 90 100Ti
m

e
to

lo
ad

an
d

sa
ve

a
co

nt
ai

ne
r[

s]

Container size [k elements]

Memory-mapped
Stream

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Performance balance

The performance balance between stream-based and memory
map-based persistence lies in:

the cost of reading and writing the whole container

versus

the relative addressing cost of each operation on the
container.

If an application is to run for a long enough time, the
per-operation cost will out-weigh the input-output cost, making
a persistence implementation based on streams preferable.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Persistence management and data consistency

Using memory maps to implement persistence moves a bit of
the responsibility from the application/run-time system to the
operating system.

One could claim that this reduces the risk of loosing data, as
the persistent state isn’t lost if the application dies unexpectedly.

But this leaves the application with the risk of being started with
the persistent data in an inconsistent state.

A safe implementation should either maintain the persistent
data constantly in a consistent state, or keep a journal, which
can be used to recover from an inconsistent state.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped files
Relatively addressed, persistent heap
Persistent containers
Comparison with other techniques

Storage format stability

When a program is recompiled, the layout of data types, type
tags, etc. may change, leaving persistent objects from one
version of a program unusable for another version of the
program.

For long-term storage – i.e. data which should persist beyond
the life-time of a specific version of a program – it is still
necessary to use a documented, compiler-independent storage
format.

It this is relevant for the application, one would have to replace
memory mapping with (for example) serialisation (streams) as
the storage implementation.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

Memory-mapped persistent containers

I have demonstrated a technique for implementing persistent
objects using Ada 2012 style containers and memory-mapped
files.

We have seen how small a change to an application source text
it takes to make objects stored in a specific container in the
application persistent.

It is not safe to make access types and System.Address
objects persistent using this technique.

The existing library requires an implementation of the POSIX
Ada API to work, but this can be substituted with an explicit
binding to the appropriate operating system calls.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

Serialisation of containers

Comparing the technique presented here with using
serialisation to persist objects:

The present technique handles data loading and storage
significantly faster.
The increased load/store speed comes at a cost when
accessing the persistent objects.
Serialisation can in some cases persist objects using
access types, while that is never the case with the present
technique.
Serialisation requires only the standard library to work.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

Persistent storage pools

Comparing the technique presented here with using persistent
storage pools:

The present technique avoids the explicit use of pool
allocation to make objects persistent.
The present technique avoids the conflict with address
space layout randomisation which is inherent in the use of
absolute addresses in persistent storage pools.
The present technique is slower, as it has to dereference
relative addresses.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

Conclusion and future work

It wasn’t quite the right way to do it.

Ada 2012 style containers (using
Implicit_Dereference) are an elegant interface to an
orthogonal persistence implementation, but
memory mapping is not really a viable backing
implementation for generic persistence implementations.

Backing an Ada 2012 style container with serialisation to a file
on finalisation is probably a more sensible, generically usable
persistence implementation.

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

More future work

Another option could of course be to make the fictive aspects
from my introduction a part of Ada 2020:

O : T with Persistent, Storage => ...;

Jacob Sparre Andersen Persistent Containers with Ada 2012



Introduction
Programmer’s interface

Implementation
Closing remarks

Memory-mapped persistent containers
Serialisation of containers
Persistent storage pools
Conclusion and future work

Contact information and links

Jacob Sparre Andersen
JSA Research & Innovation
jacob@jacob-sparre.dk

http://www.jacob-sparre.dk/

Examples from this presentation:
http://repositories.jacob-sparre.dk/
persistent-objects-with-ada-2012

You can find my Open Source software repositories at:
http://repositories.jacob-sparre.dk/

Jacob Sparre Andersen Persistent Containers with Ada 2012

http://www.jacob-sparre.dk/
http://repositories.jacob-sparre.dk/persistent-objects-with-ada-2012
http://repositories.jacob-sparre.dk/persistent-objects-with-ada-2012
http://repositories.jacob-sparre.dk/

	Introduction
	Orthogonal persistence
	Project history
	Ideas

	Programmer's interface
	Storage association
	Making objects persistent
	Manipulating persistent objects

	Implementation
	Memory-mapped files
	Relatively addressed, persistent heap
	Persistent containers
	Comparison with other techniques

	Closing remarks
	Memory-mapped persistent containers
	Serialisation of containers
	Persistent storage pools
	Conclusion and future work


