A Task-Based Concurrency Scheme for
Executing Component-Based Applications

Francisco Sanchez-Ledesma

Juan Pastor
Diego Alonso
Bérbara Alvarez
i
- N\
Ei Universidad g DS1&«
vapyg Politécnica _Hets |t
AT -4 DIVISION DE SISTEMAS E ——
de Cartagena INGENIERIA ELECTRONICA ingenieria de telecomunicacion

Contents

Technological context: CBSD, MDSD, Cforge Tool
Chain.

General Approach: Solution drivers, the WCOMM
component metamodel.

Task Based-Concurrency Scheme.
Execution Model.

Example.

Deployment and Analysis.

Conclusions and further work.

Tech. Context: CBSD + MDSD

» CBSD Component Based Software Development

Architectural software components: self contained units that encapsulate
their state and behaviour, that exchange typed messages only through their
ports, and that have only explicit context dependencies.

» MDSD Model Driven Software Development

Meta-models, models and, ...

Transformations: how models conforming to a meta-model are translated to
models conforming to other meta-models or to code.

update

» C-Forge Tool Chain

« WCOMM
component model.

FraCC execution

framework.

—
—

-
~

b,
(1) Architecture
Component-based design

) Model transformatiol

——>

(d) Code
generation

(a) Code
generation

(2)

-_—

-_
-~

(

(3) Deployment

. -
Concurrency design ~ N

skeleton

framework code
User code

(5)

Compile
\C}, j
Application executable

(c) Model
transformation

Pl

=l

update\
\

I
!
/

(4) Cheddar file
Schedulability analysis

Tech. Context: CBSD + MDSD

» We are using CBSD to design/implement applications.

» We are assuming a component model (yet another) ...

» ... and we need to link app model to an executable implementation ...
Design concepts. IMDSD Execution model concepts.
« Architectural units. to the rescue ... |« Nodes, processes, threads,
« State-charts, orthogonal >| tasks.
regions. e Synchronization primitives ...
« Ports and messages. « Functions, objects, methods ...
A Very suitable for How to map A Directly related to
application the concepts? performance analysis.
construction. WV Less suitable for application
¥V Hinder performance construction (more low level
analysis schedulability. details)

Tech. Context: CBSD + MDSD

MDSD

Design concepts.

e Architectural units.

to the rescue ...

« State-charts, orthogonal
regions.

?
« Ports and messages. concepts:

>

How to map the

Execution model concepts.
 Nodes, processes, threads, tasks.
« Synchronization primitives ...

« Functions, objects, methods ...

Components are passive entities
invoked sequentially by a single
threaded run time.

—

Cyclic Executive
Predictable, but ... rigid

Components are translated to processes
and a middleware is used for message
exchange

Flexible, but penalises
performance and hinder the
analysis.

OO0 framework solutions.

Components are translated to
composite objects.

Tasks queues and thread pools
(Java.util.concurrent, std::asynch
C++11,10S Great Dispatcher...)

Flexible, powerful, expressive,
but thought to increase
throughput and productivity,
not to ensure predictability.

General Approach. Solution drivers

OO framework solutions. .]
Flexible, powerful, expressive,

« Components to composite objects. >>| but designed to increase
« Tasks queues and thread pools throughput, not predictability.

This is the starting point, but with some extra-requirements:

« The number of resulting threads, as well as their timing
properties must be known, so that schedulability analysis can be
performed.

« The timing properties must be present in the component model,
so the concurrency model can be derived from the component
model.

« Early testing of different deployments (test-driven deployment).

» Possibility of dynamic reconfiguration of deployment depending
on current computational resources an computational load.

General Approach. Solution drivers

. some extra-requirements ...

Developer must control application deployment in nodes,
processes and threads.

» Let the developer decide how many (workers) threads
execute the application.

« Make the computational load of worker threads static.

The computational load is decided by developer before
execution instead of by the system at execution time.

« Create a cyclic executive inside each thread in order to
schedule region execution.

General Approach. The WCOMM Component

 White-box software units that encapsulate
their behaviour.

« Communicate by sending messages to each
other only through their compatible ports

» Messages are grouped into interfaces, and
follow the asynchronous without response
scheme

Ports are flow ports:

e non-atomic (Inessages can
have parameters of any type)

e bi-directional (thanks to
protocols),

* behavioural (messages can
fire events in timed automata)

Messages

T Structure <

> Behaviour

Components

Ort.Regions

Concurrency

Task Based Concurrency Scheme

Messages
Structure € Behaviour Regions are the link between
architecture and execution.
CBSD Components
Architecture Regions contain the activities which

______ - AN must be executed by the component

. depending on its internal state.

Execution Concurrency

Application: Set Orthogonal region timing properties.

of components App ={ K, ..., Ky}

T =gcd(T, € R")

Teg
Components: Set

of Orth. Regions | Ki ~ {Rins - Rz} WCET],, = max(WCET,. € R’)
Regions: Set of C‘L:Eg = max(CL,. € RY)
States (and = { St;;,..St;;e}

transitions) /T\

Tasks have timing requirements: Period,
minimum inter-arrival time, deadline,
worst execution time, ..., criticality,

St = {T,_, WCET,_,, CL__}

States: Execute Activities model
ONE Activity sequential tasks
or none

act? act?’

T Execution Model

WCET], , = max(WCET,, € R')

f-'f.:w =mazx(CL,+ € R')

Application is executed in a set of nodes. Threads timing properties.
App ={Nj,...,Ny}

T}, = ged(Treq € Th."’j
Nodes contain

processes. Ny ={Pry, ..., Pr} WCET}, = Z(H"TCETi c Th')

TEeq ;

PB;;, = maxz(CLy., € Th')

Components are
assigned to proceses

Pr; { K}

)

Processes contain Threads properties can be derived

threads. Pry {Thy} from the assigned regions.
Threads can be characterized by Regions of a process’ component
period, worst execution time and S can be assigned to any of these
priority band. threads providing thread’s PB is

compatible to region’s CL.
Th = {T,,, WCET,,,, PB }

Execution Model. Mixed Criticality.

11

Orthogonal region timing properties. Threads timing properties.
I, = ged(T, € RY) T}, = gcd(Tyeq € Th')
ll-fﬁf':T:r g = nm.;r'iﬂ'f"fme., = ”r] H'(-J.'_"Trr'“ _ Z[”(‘LT:- . c Th_.u}
CLyey = maz(CLy € R PBi, = max(CL,., < Th')
Criticality Levels Priority Bands
HL > ML > LL HP > MP > LP

 Threads belonging to each band are scheduled by following the
rate monotonic algorithm.

Threads in the HP band will have greater priority than threads in the MP
band, independently of their period.

* A cyclic executive scheduler is created inside each thread in
order to control the execution of the regions assigned to it.

H' =lem(Ty., € ThY)

12

Sample Application. Regions.

<<component>> gl
<<component>> @ - K3 -
K2 R6
(T /7 Sto St10
St7 < sts \Q ® (2,1,H0) (20,0.4,ML)
(20,1,HL) (40,0.5,ML) \ A
R4 <<component>>
St6 - K1 @ﬂ‘
R1
(40,0.8,HL) —_ =
>|_23 < (10,0.5,HL) (20,0.4,ML)
lr/"—
@ <
(2,0.5,LL) TEE e Sta
b = (20,1,ML) (40,0.5 ML)
e A
Region|Period (ms) WCET (ms)
R1 10 0.5
R2 20 1
R3 2 0.5
RA 10 0.8
R5 20 1
RG 2 1

13

Sample Application. Threads.

g Bl S— E Region|Period (ms){WCET (ms)
R5. 5)[(2:::1“ j':-—},:m,s;_ﬁsm] f\o o - :2.1J.I|TLr J _‘,~J [zojtol.:uu :H.].]D [}.5
S— J ‘ S - R2 20 1
o :{’mo.son,ss.n_ﬂ B " I{B 2 U'E’
= <) ._{ :m.n.s.HLJ::([zo.o_a,mﬂ I{l .ID U‘_H
® o) O C——— R5 20 1
< I H\ (20,1,ML) I‘—J = tqo.o.s.mﬂ) :H.G 2 1
Region to threads assignment. A possible scheme:
Thread| Region/s |Period (ms)|WCET (ms)|Priority
Thil R2 20 1 4
Th2 |R1, R4, R5 10 2.3 :
Th3 R3 2 0.5 2
Th4 R6 2 1 1

Scheduling regions inside threads.
e Th2 does need to schedule R1;R4, and R5.

 Primary cycle H2 = 1lcm(TR1; TR4; TR5) =
lem(10ms; 40ms; 20ms) = 40ms.

* Secondary cycle coincides with the
thread period, Ts2 = 10ms.

Scheduling table will have four
secondary cycles of 10ms each:

t = Oms Executes R1, R4 and R5
t = 10ms Executes R1
t = 20ms Executes R1 and R5

t = 30ms Executes R1

14

Analysis Model (Cheddar).

update

*
b

— b) Model tranjsformation
(1) Architecture (3) Deployment
Component-based design Concurrency design

(a) Code
generation

(2)

skeleton
User code

(d) Code
generation
(5) framework ckfle

updat el

{c) Model
transformation

/

7’
=

(4) Cheddar file
Schedulability analysis

\
|
/

Compile
Q ./

Application executable

Cheddar is a RT scheduling tool, designed for checking task
temporal constraints of a RT system.

It requires the number of tasks, their timing properties and the
number of shared resources of the application.

Analysis Model (Cheddar).

(c) Model
Transformation
(3) Deployment] (4) Cheddarfile
Concurrency Design J Schedulability Analysis
Update

Threads are directly transformed into Cheddar tasks.

Shared resources must be derived from the deployment model.
According to the memory structure, only message buffers are
candidates to be shared among threads.

Shared resources do not use synchronization primitives, only
mutual exclusion (communication among components is
always asynchronous).

Only those buffers that hold messages contained in regions
assigned to different threads need to be protected from concurrent
access.

16

Analysis Model (Cheddar).

(c) Model
Transformation
(3) Deployment] (4) Cheddarfile
Concurrency Design J Schedulability Analysis
Update

All the needed information can be derived from the architectural and
deployment models.
If the schedulability fails, the developer can:

Generate new deployment models, by changing the number of threads
and the assignment of regions to threads.

Modify the code or the algorithms used in the activities to faster ones, or
by relaxing the timing constraints of the states.

Change the components themselves, and thus the application
architecture.

Sample Application. Deployments.

» The default deployment model created by the Fracc Toolchain,
defines one node with a single process hosting just one thread.

Deployment 1 (T, WCET) Cheddar analysis results:

Threadl (T=2, WCET=4.8) Feasibility test based on the
Regl (10, 0.5) I .
Reg2 (20, 1.0) 3 processor uni’::zgnﬂ:n factor:
Reg3 (2, 0,5) — Processor utilization factor
Regd (40, 0.8) with deadline is 2.4

Reg5 (20, 1.0)

Regb (2, 1.0) — In the pre-emptive case, with

RM, cannot prove that the
task set is schedulable:
Deployment 2 processor utilization factor is
more than 1.0

Threadl (T=10, WCET=1.5)
Regl (10, 9.5)
Reg2 (20, 1.0)

Thread2 (T=2, WCET=1)

Feasibility test based on worst
case task response time:

Regb (2, 1.0) Processor utilization

Thread3 (T=2, WCET=2.3) exceeded: cannot compute
Reg3 (2, 0,5) bound on the response time
Regd (40, 0.8) with this task set.

Reg5 (20, 1.0)

18

Sample Application. Deployments.

Deployment 3

Threadl (T=1@, WCET=1.5)
Regl (10, ©.5)
Reg2 (20, 1.0)

Thread2 (T=20, WCET=1.8)
Regd (40, 0.8)
Reg5 (20, 1.0)

Thread3 (T=2, WCET=1.5)
Reg3 (2, 8,5)
Regb (2, 1.8)

Feasibility test based on the processor utilization factor:
» Utilization Factor: 0.99
e 200 us unused in the base period.

e In the pre-emptive case, with RM, the task set is
schedulable.

Feasibility test based on worst case response time:
e« Th2:19800 us, Thl: 6000 us, Th3: 1500 us

Deployment 4

Threadl (T=10, WCET=0.5)
Regl (10, ©.5)

Thread2 (T=20, WCET=1.@)
Reg2 (20, 1.0)
Thread3 (T=2, WCET=0.5)
Reg3 (2, 8,5)
Thread4 (T=40, WCET=0.8)
Regd (40, 0.8)
Thread5 (T=20, WCET=1.0)
Reg5 (20, 1.0)

Threadé (T=2, WCET=1.0)
Regb (2, 1.8)

Feasibility test based on the processor utilization factor:
e Utilization Factor: 0.92
e 3200 us unused in the base period.

e In the pre-emptive case, with RM, the task set is
schedulable.

Feasibility test based on worst case response time:
e Th4:15800 us, Th2: 10000 us, Th5:6000 us
e Thl:2000 us, Th3:1500 us, Th6:1000 us

file Edit Diagram Mevigeze Search Project Run Window Help

5 Pregect Bspibanar = A
BE|e ©
Fl E surabl
FR= X

2] auwbd actwida
| awekd_eswida
[¥ besicDeterypeswide
= userDlet sypeswids

B JRE Sy=tem Lirary [lavsiE-14]
» i auvhl_appowced_chagram

WE

w
el B

auvhl_appwcamend

C Memonlntertace woommyl
C_Msmonlntef ace wsod_dizg:
€ _Missonbpoolermcommed

+ dl C_Missiontpoolerwscd_diagra

= C_Chrtacletvecider woommyl

» W C_DtstacleAemidervaed_disg:
b template]
b ld wazardskDHecemar

mn d

Gomine Bl & T O

- s

Eilie ft =

' =C Missioninterface wscd diagram 03

§1 = Mttt
=

1
\FRaza=ing

K

i “awrt]_sppoecod_disgram 2

{ C_Missinninterdface

I Missionis

I FlanCrred

1 PahPlan

T

C_PezhFlanner

1 dbsdovoid

(5]

’
E_EEE fvnidar

o Palette b
"EC=E
|2 Sinrg bl oenporent o+
&) Sienple Cesnponent
B Port
2 HTA
= 5TA +
A Transiten
B Initial Fasudastate
i State
i bt
= Bindings]
(T Cvmnt Link
-3 hleszage Link
5 Clack Link
(i MumiEuant Link

r Palethe b

[l & am-

= Component 9
e ComplecCampanien
B Part
£ | Cornpemert
N Port

2= Links]
A fesmmbilink
+ Delegaticnlink

e mauwhl_fowida 5 =

£ defimition of primitive data types &
import "sesiclatatypes,.wids'';

import “userOatatypes.wics”

package suvbl.irterfaces;

interface I_PlanCed {
message setFlsn (int32 numSteps,
message runFlan ()
message abort ()
message pause ()2
message resume ()3

= interface I_Missiansts |
message nisSts [planSts ste);
}

= interface T_PathPlanf
messape nathBeq [pose stack, pose
mesyape nath (int32 mowWayooints,

interface I Obsdwoid {
message =nable{);
message disable();
message ohivsts [(intls =ts);

interface I_suvsts{
message auvsts [Amtle sts);

= intertace I_WaypointReq|

message waypolntReq (pase waypain
1

= interface T_VelesityReq]
message velesityleq [vel welociby

"

Messages, datatypes and activities

sbort

pause |

Simple Components (plus finite-state machine)
e e ——

file Edit Diagram Mavigete Search Project Run Window Help ‘

o Progect Exprbanar = A
d| =T Missioninterfacewscd diagram [
o B bl — . = | 'O Palette
. 8 sre ;__. faastnariacy = r: TI=E
aubl,act wida e s = N | Sirrg ke ornporent -
okl _icowida FLEmza=ing FLPeoommeg Crcy —

- H B o Pue e 27 Srnple t
besic Dk ebypes.wide N . w | =Fple Lemponen
userDetenypes s gl — B Pert

B IRE Sy=tem Lirany [lavs5E-l wozm ?‘_._'_I; WTA
..] | =t Been
a appwrer_chagram " . - =

Al vl

AppLvecar
C Mesonlatertace woameml

. il C_Mssonlnteface wsod_ dizg:
C_MesonSpoolermcommad

A Transitan

B Initial Fesudortato

- o Seete

d| C_MisionSpoolewcd_diagra - + A
C_Chrtadleiveoider vrommvl |
i) C_Destacledmidervescd_disge - L= Bindings

== templatel @ Dvent Link
L wizardsMOEomar

-3 Keszage Link

- (=) Clack Lirk
(T MiaiEmsnbekink:

L]
L]
=

A k] _eppmced_disgram 5

i Missioninterface

K B
I FlanCrred
[MissianSis | |
» E 1 PathFlan
£ _MissionSpaocier C_PeshFlannar
o
| —
K =) -
frySits | I L | 1 Qbsfvoid
B K 1 WarPaintfeg)
T HA

L ALY 2 | O Okt letvnidar gl
E—» A
=]]

-]

Complex Components and Appligation

'L Palette
[z =

= Cargmonent

=| | Lirks

‘E CemplecCampanent

I] Fart
Componers

N Port

< fssembiblink

-+ Delegationlink

23

Conclusions and further work

The presented approach provides:
e Control over the concurrency characteristics of the application and

e Schedulability analysis of execution model.

These objectives have been achieved by
e Defining a component model that includes structure and behaviour;
e Describing temporal requirements at the architectural level,;

 Decoupling the structural elements from the behavioural and the
algorithmic ones;

 Defining a clear and consistent association between the elements of
the system and execution models through a deployment model.

The approach is supported by a model-driven toolchain developed in
Eclipse (C-Forge).

24

Conclusions and further work

The deployment model has proven to be essential in the approach, since

e it separates application architecture from its deployment in terms of
nodes, processes and threads, enabling

» the rapid testing of different deployment scenarios.

» It does not enforce a rigid association between components and
processes/threads, but it can be easily configured thanks to the
deployment model.

Components are not forced to use a communication software for message
exchange in all scenarios, but only on those where the application is
distributed in more than one node.

25

Conclusions and further work

Regarding future works,
 we are currently enhancing the deployment model for:

e Supporting multi-core systems, and end-to-end transactions
specification.

 Automatically generating and testing different deployments, in
order to find an optimum one.

« We are also interested in generating a less pessimistic analysis file.

A more exhaustive analysis of the state-machines will enable us to
make less pessimistic analysis.

Lenguajes y Sistemas Informaticos - TIC - E.T.S.I.T.

	A Task-Based Concurrency Scheme for Executing Component-Based Applications
	Contents
	Tech. Context: CBSD + MDSD
	Tech. Context: CBSD + MDSD
	Tech. Context: CBSD + MDSD
	General Approach. Solution drivers
	General Approach. Solution drivers
	General Approach. The WCOMM Component
	Task Based Concurrency Scheme
	Execution Model
	Execution Model. Mixed Criticality.
	Sample Application. Regions.
	Sample Application. Threads.
	Analysis Model (Cheddar).
	Analysis Model (Cheddar).
	Analysis Model (Cheddar).
	Sample Application. Deployments.
	Sample Application. Deployments.
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Conclusions and further work
	Conclusions and further work
	Conclusions and further work
	Número de diapositiva 26

