
Ada Europe 2015

Francisco Sánchez-Ledesma
Juan Pastor
Diego Alonso
Bárbara Álvarez

A Task-Based Concurrency Scheme for
Executing Component-Based Applications

Contents

• Technological context: CBSD, MDSD, Cforge Tool
Chain.

• General Approach: Solution drivers, the WCOMM
component metamodel.

• Task Based-Concurrency Scheme.

• Execution Model.

• Example.

• Deployment and Analysis.

• Conclusions and further work.

2

Tech. Context: CBSD + MDSD
 CBSD Component Based Software Development

• Architectural software components: self contained units that encapsulate
their state and behaviour, that exchange typed messages only through their
ports, and that have only explicit context dependencies.

 MDSD Model Driven Software Development
• Meta-models, models and, …

• Transformations: how models conforming to a meta-model are translated to
models conforming to other meta-models or to code.

 C- Forge Tool Chain

3

• WCOMM
component model.

• FraCC execution
framework.

Tech. Context: CBSD + MDSD
 We are using CBSD to design/implement applications.

 We are assuming a component model (yet another) …

 … and we need to link app model to an executable implementation …

4

MDSD
to the rescue ...

Design concepts.

• Architectural units.

• State-charts, orthogonal
regions.

• Ports and messages.

 Very suitable for
application
construction.

 Hinder performance
analysis schedulability.

Execution model concepts.

• Nodes, processes, threads,
tasks.

• Synchronization primitives …

• Functions, objects, methods …

 Directly related to
performance analysis.

 Less suitable for application
construction (more low level
details)

How to map
the concepts?

Tech. Context: CBSD + MDSD

5

MDSD
to the rescue ...

Design concepts.

• Architectural units.

• State-charts, orthogonal
regions.

• Ports and messages.

Execution model concepts.

• Nodes, processes, threads, tasks.

• Synchronization primitives …

• Functions, objects, methods …How to map the
concepts?

Components are passive entities
invoked sequentially by a single
threaded run time.

Cyclic Executive

Predictable, but … rigid

Components are translated to processes
and a middleware is used for message
exchange

Flexible, but penalises
performance and hinder the
analysis.

OO framework solutions.

Components are translated to
composite objects.

Tasks queues and thread pools
(Java.util.concurrent, std::asynch
C++11, IOS Great Dispatcher…)

Flexible, powerful, expressive,
but thought to increase
throughput and productivity,
not to ensure predictability.

General Approach. Solution drivers

6

OO framework solutions.

• Components to composite objects.

• Tasks queues and thread pools

Flexible, powerful, expressive,
but designed to increase
throughput, not predictability.

This is the starting point, but with some extra-requirements:
• The number of resulting threads, as well as their timing

properties must be known, so that schedulability analysis can be
performed.

• The timing properties must be present in the component model,
so the concurrency model can be derived from the component
model.

• Early testing of different deployments (test-driven deployment).

• Possibility of dynamic reconfiguration of deployment depending
on current computational resources an computational load.

General Approach. Solution drivers

7

… some extra-requirements …

Developer must control application deployment in nodes,
processes and threads.

• Let the developer decide how many (workers) threads
execute the application.

• Make the computational load of worker threads static.

The computational load is decided by developer before
execution instead of by the system at execution time.

• Create a cyclic executive inside each thread in order to
schedule region execution.

General Approach. The WCOMM Component

Ports are flow ports:

• non-atomic (messages can
have parameters of any type)

• bi-directional (thanks to
protocols),

• behavioural (messages can
fire events in timed automata)

• White-box software units that encapsulate
their behaviour.

• Communicate by sending messages to each
other only through their compatible ports

• Messages are grouped into interfaces, and
follow the asynchronous without response
scheme

Structure Behaviour

Concurrency

Ort.Regions

Components

Messages

Task Based Concurrency Scheme

9

Regions are the link between
architecture and execution.

Regions contain the activities which
must be executed by the component
depending on its internal state.

Structure Behaviour

Concurrency

Ort.Regions
Components

Messages

CBSD
Architecture

Execution

Components: Set
of Orth. Regions

Application: Set
of components App = { K1, …, KN }

Ki = { Ri1, …, Rir }

Regions: Set of
States (and
transitions)

Rij = { Stij1,..Stijs}

States: Execute
ONE Activity
or none

Activities model
sequential tasks

Tasks have timing requirements: Period,
minimum inter-arrival time, deadline,
worst execution time, …, criticality, ….

St = {Tact, WCETact, CLact}

Orthogonal region timing properties.

Execution Model

10

Application is executed in a set of nodes.

App = { N1, …, NM }

Processes contain
threads. Prij { Thijt}

Threads can be characterized by
period, worst execution time and
priority band.

Th = {Tth, WCETth, PBth}

Threads properties can be derived
from the assigned regions.

Regions of a process’ component
can be assigned to any of these
threads providing thread’s PB is
compatible to region’s CL.

Nodes contain
processes. Ni = { Pri1, …, Prir }

Prij { Kijk}
Components are
assigned to proceses

Threads timing properties.

Execution Model. Mixed Criticality.

11

Criticality Levels
HL > ML > LL

Priority Bands
HP > MP > LP

• Threads belonging to each band are scheduled by following the
rate monotonic algorithm.

Threads in the HP band will have greater priority than threads in the MP
band, independently of their period.

• A cyclic executive scheduler is created inside each thread in
order to control the execution of the regions assigned to it.

Sample Application. Regions.

12

Sample Application. Threads.

13

Region to threads assignment. A possible scheme:

Scheduling regions inside threads.
• Th2 does need to schedule R1;R4, and R5.

• Primary cycle H2 = lcm(TR1; TR4; TR5) =
lcm(10ms; 40ms; 20ms) = 40ms.

• Secondary cycle coincides with the
thread period, Ts2 = 10ms.

Scheduling table will have four
secondary cycles of 10ms each:

t = 0ms Executes R1, R4 and R5

t = 10ms Executes R1

t = 20ms Executes R1 and R5

t = 30ms Executes R1

Analysis Model (Cheddar).

14

• Cheddar is a RT scheduling tool, designed for checking task
temporal constraints of a RT system.

• It requires the number of tasks, their timing properties and the
number of shared resources of the application.

Analysis Model (Cheddar).

15

• Threads are directly transformed into Cheddar tasks.

• Shared resources must be derived from the deployment model.
According to the memory structure, only message buffers are
candidates to be shared among threads.

• Shared resources do not use synchronization primitives, only
mutual exclusion (communication among components is
always asynchronous).

• Only those buffers that hold messages contained in regions
assigned to different threads need to be protected from concurrent
access.

Analysis Model (Cheddar).

16

• All the needed information can be derived from the architectural and
deployment models.

• If the schedulability fails, the developer can:
Generate new deployment models, by changing the number of threads
and the assignment of regions to threads.

Modify the code or the algorithms used in the activities to faster ones, or
by relaxing the timing constraints of the states.

Change the components themselves, and thus the application
architecture.

Sample Application. Deployments.

17

• The default deployment model created by the Fracc Toolchain,
defines one node with a single process hosting just one thread.

Sample Application. Deployments.

18

Feasibility test based on the processor utilization factor:

• Utilization Factor: 0.99

• 200 µs unused in the base period.

• In the pre-emptive case, with RM, the task set is
schedulable.

Feasibility test based on worst case response time:

• Th2: 19800 µs, Th1: 6000 µs, Th3: 1500 µs

Feasibility test based on the processor utilization factor:

• Utilization Factor: 0.92

• 3200 µs unused in the base period.

• In the pre-emptive case, with RM, the task set is
schedulable.

Feasibility test based on worst case response time:

• Th4: 15800 µs, Th2: 10000 µs, Th5:6000 µs

• Th1: 2000 µs, Th3: 1500 µs, Th6:1000 µs

Overview of WCOMM

Messages, datatypes and activities

Simple Components (plus finite-state machine)

Complex Components and Application

Conclusions and further work

23

The presented approach provides:

• Control over the concurrency characteristics of the application and

• Schedulability analysis of execution model.

These objectives have been achieved by

• Defining a component model that includes structure and behaviour;

• Describing temporal requirements at the architectural level;

• Decoupling the structural elements from the behavioural and the
algorithmic ones;

• Defining a clear and consistent association between the elements of
the system and execution models through a deployment model.

The approach is supported by a model-driven toolchain developed in
Eclipse (C-Forge).

Conclusions and further work

24

The deployment model has proven to be essential in the approach, since

• it separates application architecture from its deployment in terms of
nodes, processes and threads, enabling

• the rapid testing of different deployment scenarios.

• It does not enforce a rigid association between components and
processes/threads, but it can be easily configured thanks to the
deployment model.

Components are not forced to use a communication software for message
exchange in all scenarios, but only on those where the application is
distributed in more than one node.

Conclusions and further work

25

Regarding future works,

• we are currently enhancing the deployment model for:

• Supporting multi-core systems, and end-to-end transactions
specification.

• Automatically generating and testing different deployments, in
order to find an optimum one.

• We are also interested in generating a less pessimistic analysis file.

• A more exhaustive analysis of the state-machines will enable us to
make less pessimistic analysis.

Lenguajes y Sistemas Informáticos - TIC - E.T.S.I.T.26

	A Task-Based Concurrency Scheme for Executing Component-Based Applications
	Contents
	Tech. Context: CBSD + MDSD
	Tech. Context: CBSD + MDSD
	Tech. Context: CBSD + MDSD
	General Approach. Solution drivers
	General Approach. Solution drivers
	General Approach. The WCOMM Component
	Task Based Concurrency Scheme
	Execution Model
	Execution Model. Mixed Criticality.
	Sample Application. Regions.
	Sample Application. Threads.
	Analysis Model (Cheddar).
	Analysis Model (Cheddar).
	Analysis Model (Cheddar).
	Sample Application. Deployments.
	Sample Application. Deployments.
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Conclusions and further work
	Conclusions and further work
	Conclusions and further work
	Número de diapositiva 26

