Modeling and Analysis of Data Flow Graphs using the Digraph Real-Time Task Model

Morteza Mohaqeqi, Jakaria Abdullah, and Wang Yi

Uppsala University

Ada-Europe 2016

219

Introduction

- Data Flow Graphs:
 - Signal processing
 - Stream processing
 - Data dependency

Introduction

- Data Flow Graphs:
 - Signal processing
 - Stream processing
 - Data dependency

Design Objectives

Throughput maximization

Design Constraints

- Buffer overflow/underflow avoidance
- Schedulability

An Overview

• The Problem:

• Our Approach:

An Overview

• The Problem:

• Our Approach:

An Overview

• The Problem:

An Overview

• The Problem:

• Our Approach:

Previous Work

Previous Work

Outline

Mohaqeqi et al. (Uppsala University)

(Static) Data Flow Graphs

- Fixed token production (consumption) rate
- Fixed execution time

- Variable token production (consumption) rate
- Variable execution time

• Empty buffer

- Empty buffer
- 'a' can be fired

• Full buffer

- Full buffer
- 'a' cannot be fired
- 'b' can be fired

- 'a' cannot be fired
- 'b' can be fired

- Empty buffer
- 'a' can be fired

Design Constraints

- Underflow/overflow avoidance
- Schedulability

• Underflow avoidance

• Underflow avoidance

- Produce token as **soon** as possible
- Consume token as late as possible

8 / 19

Mohaqeqi et al. (Uppsala University)

- Produce token as **soon** as possible
- Consume token as late as possible

Mohaqeqi et al. (Uppsala University)

Design Constraints

• Underflow/overflow avoidance

Design Constraints

- Underflow/overflow avoidance
- Schedulability

Design Constraints

- Underflow/overflow avoidance
- Schedulability

Design Constraints

- Underflow/overflow avoidance
- Schedulability

Unschedulable!

Design Constraints

- Underflow/overflow avoidance
- Schedulability

Method

The Problem

Design Parameters

- Periods
- Offsets

Constraints

- No underflow
- No overflow
- Schedulability

Objective

Throughput maximization

Mohaqeqi et al. (Uppsala University)

• Repeating pattern

• Repeating pattern

Mohaqeqi et al. (Uppsala University)

• Repeating pattern

• Repeating pattern

Mohaqeqi et al. (Uppsala University)

We need a non-periodic task model

Scheduling Data Flow Graphs

Synchronous Data Flow

- Fixed behavior
- Periodically repeating

Mohaqeqi et al. (Uppsala University)

Scheduling Data Flow Graphs

Synchronous Data Flow

- Fixed behavior
- Periodically repeating

Cyclo-Static Data Flow

- Changing behavior
- Repeating pattern

Scheduling Data Flow Graphs

Synchronous Data Flow

- Fixed behavior
- Periodically repeating

Cyclo-Static Data Flow

- Changing behavior
- Repeating pattern

The Digraph Real-Time (DRT) Task Model

- A graph-based representation
- Different job types

The Digraph Real-Time (DRT) Task Model

- A graph-based representation
- Different job types

Method

Example

• MP3 playback application

• DRT task for the actor MP3

Method

Example

• MP3 playback application

• DRT task for the actor MP3

Example

• MP3 playback application

• DRT task for the actor SRC

Example

• MP3 playback application

DRT task for the actor SRC

Obtained DRT tasks

Table: Task set parameters for the DRT tasks (μs)

	Period	Offset
SRC	25061.809	60649.578
APP	56.829	110801.612
DAC	56.829	110943.686

Evaluation

Table: Total buffer requirement and throughput for each method

	Buffer Requirement	Throughput (s^{-1})
Periodic Task Set	2273	16013
DRT Task Set	2155	17596
Improvement	5%	9.8%

Conclusion

- Using a more general task model
 - More flexibility
 - Larger state-space

• Coverage of the solution space

Modeling and Analysis of Data Flow Graphs using the Digraph Real-Time Task Model

Morteza Mohaqeqi, Jakaria Abdullah, and Wang Yi

Uppsala University

Ada-Europe 2016

Thanks!