
Library Oriented Approaches for
Parallel Loop Constructs

Outline
● Parallelism Intro

 Loops and Blocks

 The Challenge of Loop Reduction

● Paraffin

 Design

 Capabilities

 Examples

● Syntax Helpers?

− Goal: Integrate with libraries

− What can be done?

Where Ada stands to shine

● Ada's focus on correctness

● Static checking

− Let compiler find problems when possible

− Catch bugs earlier in development.

● Parallel Programming is difficult to get right.

− Let Ada compiler help programmer out as much as
possible.

● Ideally Ada would prevent data races

− Other languages let programmers shoot themselves
in the foot more readily.

Parallelism Constructs

● Basically two constructs needed

− Parallel Blocks

● Forking two or more actions in parallel.

− Parallel Loops

● Simple Iteration loops

● Reduction loops

● Container Iteration

Parallel Blocks

● When Two or more lengthy actions can execute
at the same time.

Paint_Sistine_Chapel; -- 1502 - 1512

Paint_Mona_Lisa; -- 1503 - 1506

● Doesn't work so well with just one worker

− But with two or more workers, works great!

● Same goes for;

Build_Rome; -- Took longer than a day

− A classic Divide and Conquer problem

Parallel Blocks
Works well with Recursion

● Leonardo Bonacci (c. 1170 – c. 1250)

− Known also as Leonardo of Pisa

− You might know him by his other name;

● Leonardo Fibonacci

−popularized the Hindu–Arabic numeral
system

−Wrote Liber Abaci in 1202

● A historic book on Arithmetic

● Among many other things, introduced
the Fibonacci sequence

Recursive Parallel Fibonacci

Fn = Fn-1 + Fn-2 {0,1,1,2,3,5,8,13,21,34,55,89,...}

function Fibonacci (N : Natural) return

Natural is

begin

if N < 2 then

return N;

end if;

return Fibonacci (N - 2) +

Fibonacci (N - 1);

end Fibonacci;

Opportunity for Divide &
Conquer

Rework for Parallelism
function Fibonacci (N : Natural) return Natural

is

Left, Right : Natural;

begin

if N < 2 then

return N;

end if;

parallel

Left := Fibonacci (N – 2);

and

Right := Fibonacci (N – 1);

end parallel;

return Left + Right;

end Fibonacci;

Calculation of Left
& Right
occur in parallel

Synchronization occurs
here

Parallel Loops

● Same action occurring multiple times

Italian Music Term: Da Capo (D.C.)
Nested Loop
Middle Bar plays
twice

Italian goto
statement

for Verse in 1 .. 2 loop

Play (Bar1, G1, 4s); Play (Bar2, A2, 4s);

if Verse = 1 then

for Repeat in 1 .. 2 loop

Play (Bar3, B2, 4s);

end loop;

Play (Bar4, C2, 4s);

end if;

end loop;

Play (Bar5, C1, 6s);

Make this a parallel
loop
(We might get Jazz!)

Go back to the
Beginning

Biggest challenge for parallelism
syntax

● Loop Reductions (by far)

− Combining parallel results into a single overall
result

Sum := 0;

for I in 1 .. N loop

Sum := Sum + I;

end loop;

Global result,
need to avoid data
races

Need to be able to run this loop in parallel,
But how?

Benefits of Syntax

● Can be tailored to “suit” a particular problem

 Has to “fit” in the language, however

● Compiler can have more intimate knowledge

− eg. Detect data races

● Can be easier to read and write

● Examples of syntactic solution

− OpenMP (C, C++, FORTRAN)

− Cilk (C, C++)

Other side of Syntax

● Adds complexity to language definition

● More work for compiler writers

● Danger of unseen problems, or regrets

− Once something is in Standard, there for good

● Might think of better idea down the road

− As new hardware and computing platforms arise

● All roads might lead to Rome...

− but some get us there faster. (Parallelism goal)

Other extreme – Library Approach

● Libraries can be written today using existing
syntax (Examples C#, Java)

● Generally easier to implement a library than
syntax

● No additional complexity for language definition

● Syntax tends to be generalized

● Libraries can more easily adapt to specific
needs

− Controls, Parameters, Variants, etc

The syntax spectrum

● No need to stick with one extreme or the other

● Might be a middle ground that combines more
general syntax with a library approach...

− The more places new syntax can be used...

● Generally means more useful

● Other possibility is to provide both

− Libraries for those who want less “magic”

− Syntax for those that want ease of expression

Library approach

● How far can we go?

− To make libraries easy to use

● Specifically parallelism libraries

− Maybe sprinkle on some syntactic sugar?

− Eg. Ada Containers + Ada 2012 Iterator Syntax

for Element of Container loop

Element := Element + 1;

end loop;

Paraffin – A study in parallelism
libraries

● Features

− Written in Ada

− Parallel Loops

− Parallel Blocks

− Parallel subprograms

− Task Pools (optional)

− Ravenscar (optional)

− Non-commutative reduction (optional)

Paraffin – Features (Cont)

● Support for multilangage use

− C, C++, C#, Java, FORTRAN, Python, Rust

● Bindings to OpenMP and Cilk

● Native Paraffin implementations as well

● Stack safe parallel recursion

● 3 native load balancing strategies

− Work Sharing, Work Seeking, Work Stealing

● Supports for Ada 95, Ada 2005, and Ada 2012

● At least two different compiler vendors

− Adacore + ICC Irvine Compiler

C# Interfacing to Paraffin
class test_paraffin_lib

{

[ThreadStatic]

private static int partial_sum;

static void Main(string[] args)

{

int sum = 0;

paraffin_pkg.parallel_loop

(from : 1, to: 400000000,

reset: () => { partial_sum = 0; },

process: (start, finish) =>

{ for (int i = start; i <= finish; i++)

partial_sum += i;

},

reduce: () => { sum += partial_sum; });

Paraffin Library API
generic

type Loop_Index is range <>;

type Result_Type is private;

with function Reducer

(Left, Right : Result_Type)

return Result_Type;

Identity_Value : Result_Type;

package Parallel.Generic_Reducing_Loops is

function Parallel_Loop

(From, To : Loop_Index;

Loop_Body : not null access

procedure (From, To : Loop_Index;

Result : in out Result_Type))

return Result_Type;

end Parallel.Generic_Reducing_Loops;

Calling Paraffin From Ada Today
package Loops is new

Parallel.Generic_Reducing_Loops

(Loop_Index => Integer,

Result_Type => Integer,

Identity => 0,

Reducer => “+”); use Loops;

procedure Loop_Body

(Start, Finish : Integer;

Partial_Result : in out Integer) is

begin

for I in Start .. Finish loop

Partial_Result := Partial_Result + I;

end loop;

end Loop_Body;

Sum := Parallel_Loop (From => 1, To => N,

Loop_Body => Loop_Body'Access);

Idea #1 Lambda Procedures

Sum := Parallel_Loop

(From => 1,

To => N,

Loop_Body => (Start, Finish, Result)

(for I in Start .. Finish loop

Result := Result + I;

end loop));

Idea #2 Loop Body Procedures

for (Start, Finish, Result) of

Parallel_Loop (From => 1,

To => N) loop

for I in Start .. Finish loop

Result := Result + I;

end loop;

end loop;

Idea #3 Stream Function Loops

 Java takes a unique approach with Java Streams

 Functions are pipelined together

 A library approach

int sum = IntStream.range(1,N).parallel().sum();

Delete “Parallel”

to get Sequential loop

Collector function terminates Stream

Idea #3 Stream Function Loops

Sum := 0;

for I of Iter(1,N).Parallel.Add(Sum) loop

Sum := Sum + I;

end loop;

Idea #3 Stream Function Loops

Container Iteration example

-- Iterating through a map containers keys.

for Pair of Container.Keys loop

Put_Line(Key_Type'Image(Pair.Key) &

" => " &

Elem_Type'Image(Pair.Elem));

end loop;

Total : Integer := 0;

for V of Container.Elements.Sum(Total) loop

Total := Total + V;

end loop;

Summary

 A blend of libraries + general loop syntax can

express a parallel loop quite nicely

 Desire to represent parallel loops as loops

 Desire to represent functions as functions

 Which one wins? Maybe we need both?

 Combining Java Stream idea with idea for loop

procedure bodies seems like a good way to

express parallelism with minimal syntax.

Questions? Comments?

 Thank you!

