
Using Ada's Visibility Rules and Static Analysis

to Enforce Segregation

of Safety Critical Components

J-P. Rosen

ADALOG
rosen@adalog.fr

J-C. Van-Den-Hende
ALSTOM Transport

jean-christophe.van-den-hende@transport.alstom.com



Safety Integrity Levels and Segregation

Railway systems: EN50128 defines 5 “integrity levels”

From SIL0 (not critical) to SIL4 (highest criticality)

Similar to DO178B/C levels reverse A ..E

Constraints (and costs!) increase with SIL level

Mixed criticality:

Same computer running various criticality applications

Same application with various criticality components

How to make sure that unsafe components do not alter safe ones?

Possible solutions

Validate all components at highest level (expensive!)

Hardware protection

Proofs
Segregation

hardware

software



Alstom Segregation Requirements

Components based architecture with only two levels: SIL0 (not certified) 

and SIL4 (certified) components

Data can be passed from SIL0 to SIL4

Deemed unreliable

✔SIL4 access must go through special gateways to check validity

No direct access of SIL4 data by SIL0 components

Some components are not by themselves SIL4, but may be called by SIL0 

as well as SIL4 components

Classified as SIL4

SIL4 components shall call SIL0 components only through special isolation 

components

SIL0 components shall not call other SIL4 components



Structure

Safe_Components Unsafe_Components

Shared_Services

Safe_1 Safe_2 Unsafe_1 Unsafe_2

X-MemoryData Data

Public 

unit/child
Private child



Other Checks

No unchecked programming

Verified by AdaControl

No removal of language checks, including in SIL0 

components

Verified by AdaControl

No visible variable in package specifications

Verified by AdaControl



Achievements

Criticality of a component is immediately identifiable 

from its full name

The name defines applicable rules

Cross-criticality accessors are easily identified

The most important rules of segregation are enforced 

by proper usage of language features

Violations don't compile!

Remaining rules are checkable by static analysis

Name another language that can achieve that...


