
Panel on Ada & Parallelism:
Ada Container Iterators for
Parallelism and Map/Reduce

Ada-Europe 2016

Pisa, Italy

Presentation cover
page EU

www.adacore.com

Tucker Taft
AdaCore Inc

Luis Miguel Pinho
ISEP, Portugal

Brad Moore
General Dynamics

Canada

Stephen Michell
Maurya Software

based on work with

Parallel Container Iterators 2

Outline

•  Motivation

•  Parallel Blocks
–  Tasklet model

•  Parallelized Loops over Arrays
–  Might use chunking

•  Parallelized Chunked Loops over Containers

•  Hyper-objects for Reduction

•  Summary

Parallel Container Iterators 3

Why Parallel?
The Right Turn in Single-Processor Performance

Courtesy IEEE
Computer,
January 2011,
page 33.

Parallel Container Iterators 4

Our Goal: Safe, Simple, Parallel Programming

•  What do we mean by “parallel” programming as opposed
to “concurrent” programming?

–  “concurrent” programming constructs allow programmer to simplify
by using multiple threads to reflect the natural concurrency in the
problem domain – heavier weight constructs OK

–  “parallel” programming constructs allow a programmer to divide and
conquer a problem, using multiple (pico) threads (aka tasklets) to
work in parallel on independent parts of the problem – constructs
need to be light weight both syntactically and at run-time

Parallel Container Iterators 6

Earlier Proposals for

Parallel Ada Extensions

Parallel Container Iterators 7

Parallel Blocks

parallel_block_statement ::=
 parallel
 sequence_of_statements
 and
 sequence_of_statements
 {and
 sequence_of_statements}
 end parallel;

Example:
declare
 X, Y : Integer;
 Z : Float;
begin
 parallel
 X := Foo(100);
 and
 Z := Sqrt(3.14) / 2.0;
 Y := Bar(Z);
 end parallel; -- Implicit join point
 Put_Line(“X + Y=” &
 Integer'Image(X + Y));
end;

•  Compiler may spawn each
sequence as a separate
tasklet but need not;

•  May combine two, or run all
sequentially

Parallel Container Iterators 8

Tasklet Model – Fork/Join parallelism within Ada task

Application/Partition

Task 1

Task 2

Parallel Container Iterators 9

Parallelized Loops – Might be split into “chunks”

Parallel Container Iterators 10

Parallelized Loop with Parallel Arrays for Partial Reduction

declare
 Partial_Sum : array (parallel <>) of Float := (others => 0.0);
 Sum : Float := 0.0;
begin
 for I in parallel Arr'Range loop
 Partial_Sum(<>) := Partial_Sum(<>) + Arr(I);
 end loop;

 for J in Partial_Sum'Range loop
 Sum := Sum + Partial_Sum(J);
 end loop;

 Put_Line ("Sum over Arr = " & Float'Image (Sum));
end;

•  Compiler chooses number of chunks because of “array (parallel <>)”
•  Partial_Sum automatically ends up with one element per chunk

•  Partial_Sum(<>) selects appropriate element when inside loop

Parallel Container Iterators 11

Automatic final reduction step using ‘Reduced(…) attribute

declare
 Partial_Sum : array (parallel <>) of Float := (others => 0.0);
 Sum : Float := 0.0;
begin
 for I in parallel Arr'Range loop
 Partial_Sum(<>) := Partial_Sum(<>) + Arr(I);
 end loop;

 for J in Partial_Sum'Range loop
 Sum := Sum + Partial_Sum(J);
 end loop;

 Put_Line ("Sum over Arr = " & Float'Image (Sum));
end;

Put_Line ("Sum over Arr = " &
 Float'Image (Partial_Sum’Reduced));

Parallel Container Iterators 12

New Proposals for

Generalizing to Containers

Parallel Container Iterators 13

Generalizing Chunked Parallel Iterators to Containers
 for Elem of parallel (Num_Chunks) My_Map loop
 Put_Line (Elem_Type’Image (Elem));
 end loop;
 declare
 Iter : Parallel_Iterator’Class := Iterate (My_Map);
 Cursors : Cursor_Array (1 .. Num_Chunks);
 begin
 Split (Iter, Cursors); -- Get starting points for each chunk
 for I in parallel Cursors’Range loop -- One tasklet per chunk
 declare
 Curs : Cursor := Cursors (I);
 End_Curs : constant Cursor := (if I = Cursors’Last then No_Element else Cursors (I+1));
 begin
 while Curs /= End_Curs loop -- Process the chunk sequentially
 declare
 Elem : Elem_Type renames My_Map (Curs);
 begin
 Put_Line (Elem_Type’Image (Elem));
 Curs := Iter.Next (Curs);
 end;
 end loop;
 end;
 end loop;
 end;

Parallel Container Iterators 14

Split Operation supported by Parallel_Iterator

•  Split operation defined for Iterator objects that
implement the Parallel_Iterator interface:

(in addition to First and Next)

 procedure Split (Object : Parallel_Iterator;

 Cursors : out Cursor_Array);

•  Length of Cursors array determines number of chunks

•  Split initializes Cursors array with starting points

•  Chunks need not all be of the same size
–  Split should divide overall iteration into reasonably similarly-sized

sub-iteration chunks

–  For example, might break into chunks based on convenient sub-
tree partitioning

Parallel Container Iterators 15

Hyper-Objects for Reduction

•  We provide support for Map/Reduce over Containers using the
notion of a Hyper-Object

•  Hyper-Object provides a vector for partial results with an
element-per-chunk, plus a reduction operation

•  Hyper-Object is indexable, using the chunk number as the
index

•  Hyper-Object has Reduce operation to produce a final value

 generic

 type Element_Type [(<>)] is private;

 Identity : in Element_Type;

 with function Reducer (Left, Right : Element_Type)

 return Element_Type;

 package [Indefinite_]Hyper_Objects is …

Parallel Container Iterators 16

Example of Hyper-Objects – Integer Sum and String Concatenate

 declare
 package Int_Sums is
 new Hyper_Objects (String, Identity => 0, Reducer => “+”);
 package Str_Cats is
 new Indefinite_Hyper_Objects (String, Identity => “”, Reducer => “&”);
 Hyp_Str : Str_Cats.Accumulator (Num_Chunks);
 Hyp_Int : Int_Sums.Accumulator (Num_Chunks);
 begin
 for Elem of parallel (Num_Chunks) My_Str_Vec loop

 Hyp_Int(<>) := Hyp_Int(<>) + Elem’Length; -- Explicit reduction
 Hyp_Str.Update (<>, Elem); -- Reduction performed by Update
 end loop;
 declare -- Do the final reductions across the chunks
 Combined_Str : String (1 .. Hyp_Int.Reduce) := Hyp_Str.Reduce;
 begin
 Put_Line (Combined_Str);
 . . .
 end;
 end;

Parallel Container Iterators 17

Summary

•  Support for Fine-Grained Parallelism can help make
best use of new multicore hardware

•  Parallel blocks and Parallel loops over arrays are the
first step

•  Supporting Parallel iteration over Containers is natural
next step

•  Proposed “Split” operation provides an array of cursors
as starting points for chunk-based parallel iteration

•  Proposed syntactic sugar uses Split operation

•  Proposed “Hyper_Objects” generic supports user-
defined chunk-based parallel reduction operation

•  Presumes “<>” to refer to chunk index inside loop body

•  More syntactic sugar to support reduction is TBD.

