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Outline 

•  Motivation 

•  Parallel Blocks 
–  Tasklet model 

•  Parallelized Loops over Arrays 
–  Might use chunking 

•  Parallelized Chunked Loops over Containers 

•  Hyper-objects for Reduction 

•  Summary 
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Why Parallel? 
The Right Turn in Single-Processor Performance 

Courtesy IEEE 
Computer, 
January 2011, 
page 33. 
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Our Goal: Safe, Simple, Parallel Programming 

•  What do we mean by “parallel” programming as opposed 
to “concurrent” programming? 

–  “concurrent” programming constructs allow programmer to simplify 
by using multiple threads to reflect the natural concurrency in the 
problem domain – heavier weight constructs OK  

–  “parallel” programming constructs allow a programmer to divide and 
conquer a problem, using multiple (pico) threads (aka tasklets) to 
work in parallel on independent parts of the problem – constructs 
need to be light weight both syntactically and at run-time  



Parallel Container Iterators 6  

Earlier Proposals for 

Parallel Ada Extensions 
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Parallel Blocks 

parallel_block_statement ::= 
    parallel 
      sequence_of_statements 
    and 
      sequence_of_statements 
   {and 
      sequence_of_statements} 
    end parallel;  

Example:  
declare 
   X, Y : Integer; 
   Z : Float; 
begin 
   parallel 
      X := Foo(100); 
   and 
      Z := Sqrt(3.14) / 2.0; 
      Y := Bar(Z); 
   end parallel; --  Implicit join point 
   Put_Line(“X + Y=” &  
            Integer'Image(X + Y)); 
end; 
 

•  Compiler may spawn each 
sequence as a separate 
tasklet but need not; 

•  May combine two, or run all 
sequentially 
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Tasklet Model – Fork/Join parallelism within Ada task 

Application/Partition 

Task 1 

Task 2 
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Parallelized Loops – Might be split into “chunks” 
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Parallelized Loop with Parallel Arrays for Partial Reduction 

declare 
   Partial_Sum : array (parallel <>) of Float := (others => 0.0); 
   Sum : Float := 0.0; 
begin 
   for I in parallel Arr'Range loop 
     Partial_Sum(<>) := Partial_Sum(<>) + Arr(I); 
   end loop; 
  
   for J in Partial_Sum'Range loop 
     Sum := Sum + Partial_Sum(J); 
   end loop; 
 
   Put_Line ("Sum over Arr = " & Float'Image (Sum)); 
end; 

•  Compiler chooses number of chunks because of “array (parallel <>)” 
•  Partial_Sum automatically ends up with one element per chunk 

•  Partial_Sum(<>) selects appropriate element when inside loop 
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Automatic final reduction step using ‘Reduced(…) attribute 

declare 
   Partial_Sum : array (parallel <>) of Float := (others => 0.0); 
   Sum : Float := 0.0; 
begin 
   for I in parallel Arr'Range loop 
     Partial_Sum(<>) := Partial_Sum(<>) + Arr(I); 
   end loop; 
  
   for J in Partial_Sum'Range loop 
     Sum := Sum + Partial_Sum(J); 
   end loop; 
 
   Put_Line ("Sum over Arr = " & Float'Image (Sum)); 
end; 

Put_Line ("Sum over Arr = " & 
   Float'Image (Partial_Sum’Reduced)); 
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New Proposals for 

Generalizing to Containers 
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Generalizing Chunked Parallel Iterators to Containers 
   for Elem of parallel (Num_Chunks)  My_Map loop 
      Put_Line (Elem_Type’Image (Elem)); 
   end loop; 
  declare 
      Iter : Parallel_Iterator’Class := Iterate (My_Map); 
      Cursors : Cursor_Array (1 .. Num_Chunks); 
   begin 
      Split (Iter, Cursors);  -- Get starting points for each chunk 
      for I in parallel Cursors’Range loop  -- One tasklet per chunk 
         declare 
            Curs : Cursor := Cursors (I); 
            End_Curs : constant Cursor := (if I = Cursors’Last then No_Element else Cursors (I+1)); 
         begin 
            while Curs /= End_Curs loop  --  Process the chunk sequentially 
               declare 
                  Elem : Elem_Type renames My_Map (Curs); 
               begin 
                  Put_Line (Elem_Type’Image (Elem)); 
                  Curs := Iter.Next (Curs); 
               end; 
            end loop; 
         end;  
      end loop; 
    end; 
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Split Operation supported by Parallel_Iterator 

•  Split operation defined for Iterator objects that 
implement the Parallel_Iterator interface: 

(in addition to First and Next) 

     procedure Split (Object : Parallel_Iterator;  

                                Cursors : out Cursor_Array); 

 

•  Length of Cursors array determines number of chunks 

•  Split initializes Cursors array with starting points 

•  Chunks need not all be of the same size 
–  Split should divide overall iteration into reasonably similarly-sized 

sub-iteration chunks 

–  For example, might break into chunks based on convenient sub-
tree partitioning  
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Hyper-Objects for Reduction 

•  We provide support for Map/Reduce over Containers using the 
notion of a Hyper-Object 

•  Hyper-Object provides a vector for partial results with an 
element-per-chunk, plus a reduction operation 

•  Hyper-Object is indexable, using the chunk number as the 
index 

•  Hyper-Object has Reduce operation to produce a final value 

 generic 

    type Element_Type [(<>)] is private; 

    Identity : in Element_Type; 

               with function Reducer (Left, Right : Element_Type) 

       return Element_Type; 

 package [Indefinite_]Hyper_Objects is … 
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Example of Hyper-Objects – Integer Sum and String Concatenate 

     declare 
        package Int_Sums is 
           new Hyper_Objects (String, Identity => 0, Reducer => “+”); 
        package Str_Cats is 
           new Indefinite_Hyper_Objects (String, Identity => “”, Reducer => “&”);         
        Hyp_Str : Str_Cats.Accumulator (Num_Chunks); 
        Hyp_Int : Int_Sums.Accumulator (Num_Chunks); 
     begin 
        for Elem of parallel (Num_Chunks) My_Str_Vec loop 

 Hyp_Int(<>) := Hyp_Int(<>) + Elem’Length; -- Explicit reduction   
             Hyp_Str.Update (<>, Elem); -- Reduction performed by Update 
        end loop; 
        declare  -- Do the final reductions across the chunks 
            Combined_Str : String (1 .. Hyp_Int.Reduce) := Hyp_Str.Reduce; 
        begin 
            Put_Line (Combined_Str); 
            . . . 
        end; 
     end;    
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Summary 

•  Support for Fine-Grained Parallelism can help make 
best use of new multicore hardware 

•  Parallel blocks and Parallel loops over arrays are the 
first step 

•  Supporting Parallel iteration over Containers is natural 
next step 

•  Proposed “Split” operation provides an array of cursors 
as starting points for chunk-based parallel iteration 

•  Proposed syntactic sugar uses Split operation 

•  Proposed “Hyper_Objects” generic supports user-
defined chunk-based parallel reduction operation 

•  Presumes “<>” to refer to chunk index inside loop body 

•  More syntactic sugar to support reduction is TBD. 


