
Hardware-Based Data Protection/Isolation at
Runtime in Ada Code for Microcontrollers

J. Germán Rivera
(jgrivera67@gmail.com)

Agenda

• Motivation
• Using an MPU to Enforce Data Protection
• An MPU-based Data Protection Architecture for Ada

Programs
• Ada Code Design Implications

• Changes Required in the Ada RTS

• Variations of the Basic Data Protection Architecture

• Portable Implementation Available in GitHub

• Conclusions

Motivation

• Although data corruption is less likely in code written
in Ada than in code written in C/C++, it is still
possible (e.g., Ada 2012 Address aspect buggy uses).

• Ada programs that call libraries written in C/C++
need to protect themselves from buggy or malicious
C/C++ code that can corrupt the Ada data structures.

• Ada programs need to protect themselves from data
corruption caused by buggy or malicious DMA
transfers that may write (or read) to memory that
they are not supposed to.

Using an MPU to Enforce Data Protection

• Many modern small embedded processors
(microcontrollers) come with a memory protection
unit (MPU) as an alternative to the memory
management unit (MMU) from larger processors.

Using an MPU to Enforce Data Protection (2)

• The MPU enables software to control access to areas
of the physical memory address space, known as
regions
– Number of regions is limited by the number of region

descriptors in the MPU (typically 8-16)

– Each region descriptor defines a region as an address
range along with read/write/execute permissions to access
it

– Each region can be of different size

– Modern MPUs support regions as small as 32 bytes long.

Using an MPU to Enforce Data Protection (3)

• With this level of protection granularity, it becomes
possible to control access at the individual data
object or data structure level.
– This protection granularity can be used to protect an Ada

package's private data structures from being corrupted by
an errant pointer in another Ada package, C/C++ module
or assembly module.

– A device's MMIO registers can be protected in a similar
way.

Using an MPU to Enforce Data Protection (4)

• The MPU can also be used to ensure that
security-sensitive/privacy-sensitive data be accessed
only by code it is supposed to (even for read-only
access).

• Finally, the MPU can be used to ensure that
safety-critical code is only invoked from the expected
callers, and not accidentally via an invalid function
pointer or from a malicious attack.

• MPU region access violations trigger a hardware
exception (e.g. Bus fault, MemManage fault)

Using an MPU to Enforce Data Protection (5)

• ARMv7-M architecture MPU:
– Region size can be as small as 32 bytes but needs to be a power

of two
– A region’s starting address needs to be a multiple of its size
– A region can have up to 8 sub-regions to compensate for these

limitations
– No DMA access control and only one CPU is supported

• New ARMv8-M architecture MPU is more flexible:
– Region size does not need to be a power of two, but just a

multiple of 32 bytes
– A region’s starting address does not need to be a multiple of its

size, but just 32-byte aligned

Using an MPU to Enforce Data Protection (6)

• NXP Kinetis microcontrollers MPU:
– Region size just needs to be a multiple of 32 bytes

– Region starting address just needs to be a multiple of 32
(32-byte aligned)

– Supports multiple bus masters

• DMA access control for multiple DMA-capable devices and/or
more than one CPU

An MPU-based Data Protection Architecture for
Ada Programs

• The MPU is programmed so that all RAM data that is
not a local variable is read-only by default.
– By default, the only writable area for an Ada task is its own

stack, nothing else. (Same for an interrupt service routine).

– Non-local variables (statically and dynamically allocated
globals) and MMIO registers are not writable by default.

• An Ada package needs to ask permission to the MPU
to be able to modify its own private global variables.
– This may sound a little inconvenient, but it is a small price

to pay to ensure the package's data integrity at runtime.

An MPU-based Data Protection Architecture for
Ada Programs (2)

• Allocation of MPU Region Descriptors

 whole
address space

Ada Code Design Implications

• The private global data of each Ada package must be
grouped into a contiguous area of memory
– A simple way is to use a global record data type

– For maximum protection, this record must occupy a whole
MPU region. Example:

 type My_Global_Data_Type is record
 Field_1 : Type_1
 ..
 Field_N : Type_N;
 end record with
 Alignment => MPU_Region_Alignment,
 Size => MPU_Region_Alignment * Byte'Size;

32 bytes

Ada Code Design Implications (2)

• Example for a record larger than the smallest region:
– For ARMv8-M and Kinetis MPUs:

 type My_Global_Data_Type is record
 ...
 end record with
 Alignment => MPU_Region_Alignment,
 Size => 3 * MPU_Region_Alignment * Byte'Size;

– For ARMv7-M MPU:
 type My_Global_Data_Type is record
 ...
 end record with
 Alignment => 4 * MPU_Region_Alignment,
 Size => 4 * MPU_Region_Alignment * Byte'Size;size in bytes

must be a
power of 2

alignment
must match
size in bytes

size in bytes
must be
multiple of 32

32 bytes

Ada Code Design Implications (3)

• A package's public subprograms that modify
non-local variables need to:
– Call Set_Private_Data_Region, upon entry, to set the

private data region descriptor in the MPU, to point to the
package's private global variables or to point to output
parameters, with read-write permissions.

 procedure Set_Private_Data_Region (
 Start_Address : System.Address;
 Size_In_Bits : Integer_Address;
 Permissions : Data_Permissions_Type;
 Old_Region : out MPU_Region_Descriptor_Type);

 Read_Write

Ada Code Design Implications (4)

• A package's public subprograms that modify
non-local variables need to (cont.):
– Then, call Set_Private_Data_Region without saving the

previous private region, to switch to other private areas:

 procedure Set_Private_Data_Region (
 Start_Address : System.Address;
 Size_In_Bits : Integer_Address;
 Permissions : Data_Permissions_Type);

– Call Restore_Private_Data_Region, upon exit, to restore
the caller's private data region descriptor in the MPU.

 procedure Restore_Private_Data_Region (
 Saved_Region : MPU_Region_Descriptor_Type);

 Read_Write

Ada Code Design Implications (6)

• Example 1:
 procedure My_Public_Proc1(Out_Arg : out Arg_Type) is
 Old_Region : MPU_Region_descriptor_Type;
 begin

 Set_Private_Data_Region (My_Globals'Address,
 My_Globals'Size,
 Read_Write, Old_Region);
 ...
 Set_Private_Data_Region (Out_Arg'Address,
 Out_Arg'Size,
 Read_Write);
 ...
 Restore_Private_Data_Region (Old_Region);

 end My_Public_Proc1;

 No need to save the
previous private data region

again

Ada Code Design Implications (6)

• Example 2:
 procedure My_Public_Proc2(arg : Arg_Type) is
 Old_Region : MPU_Region_descriptor_Type;
 begin

 Set_Private_Data_Region (My_Data'Address,
 My_Data'Size,
 Read_Write, Old_Region);
 ...
 Set_Private_Data_Region (MMIO_registers'Address,
 MMIO_Registers'Size,
 Read_Write);
 ...
 Restore_Private_Data_Region (Old_Region);

 end My_Public_Proc1;

 Input arguments do not
need to use the private data

region, since read-only
access is always allowed

 Memory-mapped I/O registers
are treated as another form of

non-local variables

Changes Required in the Ada RTS

• Task control block:
– Fields for the following MPU region descriptors need to be

added:
• Task stack region descriptor

• Private data region descriptor

• Private code region descriptor (if "hidden" code areas, see later)

• Task creation:
– Initialize task stack MPU region

• All RTS code that writes to non-local variables:
– Needs to temporarily make the global background data

region writable (or use the private data region)

Changes Required in the Ada RTS (2)

• Startup code (reset exception handler):
– Add MPU initialization and configuration of global regions

• MPU initialized but left disabled
• It needs to be enabled in the application's main subprogram

• Task context switch:
– The following MPU region descriptors need to be

saved/restored:
• Task stack region descriptor

• Private data region descriptor

• Private code region descriptor

– Since the "writable" on/off state of the global background
data region is per task, the permissions for this region
need to be saved/restored as well

Variations of the Basic Data Protection
Architecture

• Support for DMA access control
32 bytesnew regions

Variations of the Basic Data Protection
Architecture (2)

• Support for DMA access control (cont.)
– Devices driver needs to call Set_DMA_Region during

device initialization time:
 procedure Set_DMA_Region (

 Region_Id : MPU_Region_Id_Type;

 DMA_Master : Bus_Master_Type;

 Start_Address : System.Address;

 Size_In_Bits : Integer_Address;

 Permissions : Data_Permissions_Type);

 Read_Write
or Read_Only

Variations of the Basic Data Protection
Architecture (3)

• Support for code in RAM

new region

excludes RAM text

Variations of the Basic Data Protection
Architecture (4)

• Support for code in RAM (cont.)
– Linker script changes:

 .data : AT (__rom_end) {
 ...

 __ram_text_start = .;

 *(.ram_text)

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __ram_text_end = .;

 __background_data_region_start = .;

 ...

 }

– Subprogram declaration:
procedure My_Public_RAM_Code

 with Linker_Section => ".ram_text";

Code placed in RAM

Variations of the Basic Data Protection
Architecture (5)

• Support for "hidden" (secret) regions

new regionsnew regions

Variations of the Basic Data Protection
Architecture (6)

• Support for "hidden" regions (cont.)
– To make "hidden" data areas visible, application code

needs to call Set_Private_Data_Region, with Read_Only or
Read_Write permissions.

– To make "hidden" code visible, application code needs to
call Set_Private_Code_Region:

 procedure Set_Private_Code_Region (
 First_Address : System.Address;
 Last_Address : System.Address;
 Old_Region : out MPU_Region_Descriptor_Type);

Variations of the Basic Data Protection
Architecture (7)

• Support for "hidden" regions (cont.)
– Linker script changes:

 .text : {
 . = ALIGN(MPU_REGION_ALIGNMENT);

 __secret_flash_text_start = .;

 *(.secret_flash_text)

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __secret_flash_text_end = .;

 __flash_text_start = .;

 (.text .text. .gnu.linkonce.t*)

 *(.gnu.warning)

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __flash_text_end = .;

 } > flash_text

secret code in flash

public code in flash

Variations of the Basic Data Protection
Architecture (8)

• Support for "hidden" regions (cont.)
– Linker script changes (cont.):

 .data : AT (__rom_end) {

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __data_start = .;

 __secret_ram_text_start = .;

 *(.secret_ram_text)

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __secret_ram_text_end = .;

 ...

 __secret_data_area_start = .;

 *(.secret_data)

 . = ALIGN(MPU_REGION_ALIGNMENT);

 __secret_data_area_end = .;

 __background_data_region_start = .;

secret code in RAM

secret data in RAM

Variations of the Basic Data Protection
Architecture (9)

• Support for "hidden" regions (cont.)
– Ada declarations:

My_Secret_Data : My_Secret_Data_Type

 with Linker_Section => ".secret_data";

procedure My_Secret_Flash_Code

 with Linker_Section => ".secret_flash_text";

procedure My_Secret_RAM_Code

 with Linker_Section => ".secret_ram_text";

Portable Implementation Available in GitHub

• Support for the Kinetis MPU
– https://github.com/jgrivera67/embedded-runtimes/blob/maste

r/bsps/kinetis_k64f_common/bsp/memory_protection.ads
– https://github.com/jgrivera67/embedded-runtimes/blob/maste

r/bsps/kinetis_k64f_common/bsp/memory_protection.adb

• Support for the ARMv7-M MPU
– https://github.com/jgrivera67/embedded-runtimes/blob/maste

r/bsps/kinetis_kl28z_frdm/bsp/memory_protection.ads
– https://github.com/jgrivera67/embedded-runtimes/blob/maste

r/bsps/kinetis_kl28z_frdm/bsp/memory_protection.adb

• Usage Examples
– https://github.com/jgrivera67/make-with-ada/blob/master/hex

iwear_iot_stack/mpu_tests.adb

https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.adb
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.adb
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_k64f_common/bsp/memory_protection.adb
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.ads
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.adb
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.adb
https://github.com/jgrivera67/embedded-runtimes/blob/master/bsps/kinetis_kl28z_frdm/bsp/memory_protection.adb
https://github.com/jgrivera67/make-with-ada/blob/master/hexiwear_iot_stack/mpu_tests.adb
https://github.com/jgrivera67/make-with-ada/blob/master/hexiwear_iot_stack/mpu_tests.adb
https://github.com/jgrivera67/make-with-ada/blob/master/hexiwear_iot_stack/mpu_tests.adb

Conclusions

• Data protection at the individual data object level is
a novel approach of using a Memory Protection Unit
– For bare-metal single-address-space embedded platforms,

code modules can be protected from corrupting each
other’s data structures, even in single-threaded programs.

– Same approach could be used to protect code modules
inside of a process running in an MMU-based operating
system (e.g., Linux), if fine-grained MPU functionality for
virtual addresses were available as part of the MMU.

– For object-oriented code, data protection can be done at
the individual object instance.

Conclusions (2)

• Ideally, application code should be architected from the
beginning to use MPU-based data protection, as opposed
to adding it as an afterthought.

• However, MPU-based data protection does not have to
be all or nothing
– Ada tasks executing trusted or legacy code can set the global

background data region as writable (as if the MPU was not
being used), for the lifetime of the task

– Only some untrusted components (e.g., third-party libraries or
C/C++ code invoked from Ada code) may need to be wrapped
in a data protection layer.

