
Copyright © AdaCore Slide: 1

J. Ruiz, T. Gingold, P. BernardiPat Rogers

Ada Europe 2017

Vienna, Austria

[rogers|ruiz|gingold|bernardi]@adacore.com

A New Profile Based on Ravenscar

GNAT_Extended_Ravenscar

Copyright © AdaCore Slide: 2Slide: 2

The GNAT Extended Ravenscar Profile

• A new profile based on Ravenscar

• For use in a subset of the applications
intended for Ravenscar

• Specifically, for real-time and embedded
applications not requiring most rigorous
forms of analysis

– For example, certification or safety analysis

• But do require schedulability analysis

– Unless simply embedded

Copyright © AdaCore Slide: 3Slide: 3

Does Not “Replace” Ravenscar

• Use Ravenscar when maximum simplicity is
required

– RTL is less complex, less expensive to analyze

• Use Ravenscar when maximum efficiency is
required

• AdaCore is shipping both profiles and will
continue to do so

– Ravenscar profile in the ravenscar-sfp-* runtimes

 For certification

– Extended profile in the ravenscar-full-* runtimes

Copyright © AdaCore Slide: 4Slide: 4

Why Another Profile?

• Ravenscar is necessarily restrictive

– For sake of certification and safety analyses

– For sake of maximum efficiency

– For sake of easiest schedulability analysis

• A loss of expressive power inevitably
results from a restrictive subset

• This loss can be mitigated when only
predictability and relative efficiency are
required

Copyright © AdaCore Slide: 5Slide: 5

What Does the New Profile Add/Allow?

• Multiple protected entries per PO

• Multiple queued callers per protected entry

– Entry queue depth can be greater than 1

• Somewhat relaxed entry barriers

– Via new restriction “Pure_Barriers”

• Relative delay statements

– E.g., to protect electro-mechanical relay burnout

• Use of Ada.Calendar

– E.g., for time-stamping

Copyright © AdaCore Slide: 6Slide: 6

The New Pure_Barriers Restriction

• Applied instead of Simple_Barriers

• Allows more expressive entry barriers

• Addresses implementation freedom
regarding number of times a barrier
expression is evaluated

• Therefore, barrier content remains
restricted

• No side-effects and no exceptions possible

• No recursion either

Copyright © AdaCore Slide: 7Slide: 7

Only the

language-defined

versions!

Constructs Allowed by Pure_Barriers

• Variables local to the protected object (private part)

• Discriminants for the protected object

• Numeric literals

• Enumeration (and hence character) literals

• Named numbers

• Relational operators

• Logical operators (and, or, xor)

• Short-circuit control forms (and then, or else)

• The logical negation operator (not)

• The Count attribute for entries

Copyright © AdaCore Slide: 8Slide: 8

Allowed Example Body # 1

protected body Barrier is

entry Wait when (Wait'Count = Capacity) or Release_Others is
begin

Release_Others := Wait'Count > 0;
end Wait;

function Value return Positive is
begin

return Capacity - Wait'Count;
end Value;

end Barrier;

Copyright © AdaCore Slide: 9Slide: 9

Allowed Example Body # 2

protected body Bounded_Buffer is

entry Put (Item : in Element) when Count /= Capacity is
begin

Values (Next_In) := Item;
Next_In := (Next_In mod Capacity) + 1;
Count := Count + 1;

end Put;

entry Get (Item : out Element) when Count > 0 is
begin

Item := Values (Next_Out);
Next_Out := (Next_Out mod Capacity) + 1;
Count := Count - 1;

end Get;

…

end Bounded_Buffer;

Copyright © AdaCore Slide: 10

What is the Cost?

Copyright © AdaCore Slide: 11Slide: 11

Canonical Protected Action Semantics

• Recall “writers” are protected procedures
and entries; they can change a PO’s state

• Whenever a writer completes, all entries
are evaluated and one with a True barrier
and a queued caller will execute, if any

• Each entry is a writer, so completion
triggers another iteration of evaluation,
selection, and possible execution

• Iteration repeats until no more entries can
be executed

Copyright © AdaCore Slide: 12Slide: 12

In Ravenscar, No Iteration Involved

• A protected procedure can trigger a
protected action but there would be at
most one entry to execute

• That entry could have at most one caller

• Thus run-time library routine is very simple

– No loop

– No queue processing

– No repeated barrier evaluations

Copyright © AdaCore Slide: 13Slide: 13

So What Is the Cost?

• Increased execution time for protected
procedure and entry calls

• Increased execution time to call some
attributes

• Blocking term can be increased

• All due to iterative protected actions

• Note a PO with no entries is not affected

– Specialized RTL routine called

Copyright © AdaCore Slide: 14Slide: 14

How Much Overhead?

• Measured using the ESA Ravenscar
Benchmarks (ERB)

• Comparing same Ravenscar benchmarks on
RTLs providing Ravenscar and new profile

– Only difference is the profiles

• Thus measuring overhead of new profile

• Expressed in terms of percentages relative
to Ravenscar

Copyright © AdaCore Slide: 15Slide: 15

Constant Overhead Percentages (1 of 2)

• Keep in mind limitations of percentages

– From 2 instructions to 3 would be 50% increase

• Entry call, barrier open: 54% slower

– Due to iterative protected action semantics

• Entry call, barrier closed: 25% slower

– Caller is queued

• Protected procedure call, when PO contains
a closed entry: 13% slower

– Check for other open entries but nothing else

Copyright © AdaCore Slide: 16Slide: 16

Constant Overhead Percentages (2 of 2)

• Call to 'Count for an entry, made from a
protected procedure within that same
protected object: 21% slower

– Value must be computed

• Call to 'Caller in an entry body: 58% slower

– “Last task in” means caller may not be executor

• Actual times are still small and the
implementation is still simple

• Conclusion: yes, there is overhead but
acceptable

Copyright © AdaCore Slide: 17Slide: 17

What About Schedulability Analysis?

• We use the “last task in” implementation
for protected actions

– The last task in the PO evaluates all entry states
and executes entry bodies of all open entries on
behalf of queued callers

– Avoids task switch for each entry body execution

• Affects the “blocking” term in the analysis

– Time a task is blocked by lower priority tasks

– Bounded and quantifiable

• Thus analysis remains possible

Copyright © AdaCore Slide: 18Slide: 18

The Blocking Term Value

• “Last task in” means calling one entry may
require time to execute all entries in that PO,
for all queued callers

• Worst case number of callers is all other tasks

• But for each entry, we can specify max callers
via new aspect Max_Queue_Length

• Worst case blocking term for any one entry is
the sum of times to execute all entries in that
PO, for max callers per entry

• Thus blocking bound is reduced to a user-
controlled value, depending on design

Copyright © AdaCore Slide: 19Slide: 19

Summary

• A profile complementary to Ravenscar

– When most stringent analyses not required

• Provides significant expressive power gain

– Many protected object idioms now allowed

– No need for “delay until Clock + Interval” idiom

• Predictability and efficiency retained

• Schedulability analysis remains possible

• We hope to have it in Ada 2020

– With a much better name

