
1

Hardware Support to Non-intrusive Runtime
Verification on Processor Technologies∗

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: {jmrufino}@ciencias.ulisboa.pt

Abstract

Software-based instrumentation probes always disturbs
the functional and non-functional properties of a system,
even if in a minimal way. To avoid the disturbance
of system operation, by instrumentation probes, non-
intrusive runtime verification must rely on hardware-
based technology.

This paper reviews classical processor technology to
understand which kind of support is provided on each
processor family, its intrusiveness, functionality and
offered system support.

1 Introduction
The traditional approach to runtime verification is to instru-
ment the software of a functional system with small pieces
of code that, acting as observers, assess the software state
in runtime. Software-based instrumentation inherently dis-
turbs the functional or non-functional properties of a system,
namely with respect to timing properties, which are crucial to
embedded and real-time system design [1, 2, 3]. They always
exhibit some degree of intrusiveness, even if minimal.

Software-based observing components affect the normal be-
haviour of the observed system, throughout what is called
“the observer effect” or “the probe effect” [4]. The delays
implicitly associated with the insertion of software-based
probes may ill affect the timing characteristics of concurrent
programs. The removal of such probes from the software,
which will lead to shorter program/task execution times, may
render a given task set unschedulable, due to changes in the
corresponding cache-miss profile [5, 6, 7].

Hardware-based approaches are inherently non-intrusive, i.e.
they do not affect system operation. Though hardware-based
observation is in essence non-intrusive, monitoring functions,
i.e. runtime verification (RV) may have some degree of intru-
siveness. Non-intrusiveness, may then be referred to as a RV
constraint. RV constraints are not only relevant, but in fact
fundamental, for highly critical systems [2].

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).

This paper reviews classical processor technology to under-
stand which kind of support is provided on each processor
family, its intrusiveness, functionality and, in general, offered
system support.

A comprehensive overview of various hardware (including
on-chip), software and hybrid (i.e., a combination of hardware
and software) methodologies for system observation and veri-
fication of software execution in runtime is provided in [8].
System observing solutions can be designed to be directly
connected to some form of system bus, enabling information
gathering regarding events of interest, such as data transfers
and signalling taking place inside the computing platform,
namely instruction fetch, memory read/write cycles and inter-
rupt requests, with no required changes on the target system’s
architecture, as shown in the diagram of Figure 1. Examples
of such kind of hardware-based observation approaches are
proposed in [9, 10, 11, 12, 13].

Computer Hardware Platform

Software

Runtime
Verification

Hardware

instrumentation

Non-intrusive

observation verdict
events of

interest

Figure 1: Non-intrusive runtime verification.

The paper is organized as follows. Section 2 presents a de-
scription of the previous related work. Section 3 reviews the
classical processor technology looking for non-intrusive run-
time verification support. Section 4 describes the evaluation
experiment for a particular processor technology (SPARC
LEON) and, finally, Section 5 presents some concluding re-
marks and future research directions.

2 Previous Work
The application of non-intrusive runtime monitoring to em-
bedded systems has been discussed in [8,14] and, more specif-
ically, in safety critical environments [13].

Configurable minimally intrusive event-based frameworks
for dynamically runtime monitoring was developed in [15],
which was later complemented with a combination of hard-
ware and software observability [3].

Additionally, the RV concept has been applied to autonomous
systems [16] and to a AUTOSAR-like real-time operating

Ada User Jour na l Vo lume xx, Number y, May 2018

2 NIRV Review

system aiming the automotive domain [17]. A runtime mon-
itoring approach for autonomous vehicle systems requiring
no code instrumentation by observing the network state is
described in [18].

High quality trace data in a multi-core environment uses an
approach based on non-intrusive full observation, meaning
not only the program counter, but also other data read/write
cycles, cache and bus operations are included in the trace [9].

A set of first contributions and discussion of technical issues
such as metadata management, format and storage on prac-
tical examples are addressed in [19]. A description of the
fundamentals of a trace are presented in [20].

3 Processor Technology
This section reviews different processor families to determine
the support they provide, its intrusiveness and functionality.

3.1 Intel: Processor Trace
The Intel processor trace (PT) [21] is an extension of the
Intel Architecture that captures information concerned with
software execution, on each hardware thread, using dedicated
hardware facilities. So, when an execution completes some
special-purpose software can do processing of the captured
trace data and reconstruct the exact program flow (Figure 2).
Intel PT has an execution overhead cost: though a target less
than 5% overhead is desirable, there are some applications
with 35% overhead, being 20% an average value.

Intel PT

software

decoder

Intel

CPU

Intel PT

Hardware

Intel

CPU

Intel PT

Hardware

Intel

CPU

Intel PT

Hardware

Intel PT packet log

(one per hardware thread)

Runtime data

Reconstruted

execution flow

Configure and

Enable Intel PT

Binary

Figure 2: Intel processor trace (Intel PT).

The captured information is collected in data packets, as de-
scribed in [22] and summarized next. A set of packets (Packet
Stream Boundary, PSB and Paging Information Packet, PIP),
act as heartbeats generated at regular intervals (every 4 KiB)
and record changes in attributing a linear address to an ap-
plication. The MODE packet provides the decoder relevant
execution information for binary interpretation and trace log
and the Overflow (OVF) packet is issued when a processor ex-
periences an internal buffer overflow. Three different packets,
ranging different precisions, are used to get time information:
Timestamp Counter (TSC) which provides some portion of a
software-visible timestamp counter; Mini Timestamp Counter
(MTC) which is more frequent and used with TSC to get accu-
rate timestamps for less cost; Cycle Counter (CYC) packets

provide even finer grain timestamp information. The Core
Bus Ratio (CBR) contains the core bus clock ratio.

In a control flow tracing context, the following packets are
used: Taken Not-Taken (TNT) tracks the direction of condi-
tional branches (taken or not taken); Target IP (TIP) record
the target value of the IP (Instruction Pointer) register in indi-
rect branches; Flow Update Packet (FUP) provide the value
of the IP for asynchronous events (interrupt and exception).

Each packet of the trace output is written to memory in
a collection of variable-sized regions of physical memory.
Therefore, with the knowledge of binary information, one can
reconstruct the entire control flow of the original software,
together with the precise timing of each branch.

Since the decoding of the traces is “several orders of magni-
tude slower than tracing”, one may think a proprietary design
where the Intel PT decoder memory area is set as a dual-port
memory device, thus providing independence and allows non-
intrusive runtime verification. However, these schemes are
very specialised.

3.2 ARM: CoreSight Technology

The next system we analyse is based on the ARM technology
and its non-intrusive observation scheme, generically known
as ARM CoreSight [23, 24, 25].

The architecture of ARM CoreSight is represented in Figure 3.
The simplest form of trace is that generated by the software
executing on the cores. Optimizations on this approach allow
writing to the ARM Instrumentation Trace Macrocell (ITM),
which streams the trace data direct to a trace buffer, as shown
in Figure 3. This provides a high bandwidth channel that
allows the delivery of more instrumentation points. However,
the drawback of this approach is its natural intrusiveness.

ARM

Core

Other trace sources

Embedded

Trace Buffer

(on-chip capture)

 ETM

ITM

Bus

Trace

Funnel

Other cores

Funnel

Core trace data

Replicator

Trace Port

Interface Unit

(off-chip capture)

Figure 3: ARM CoreSight.

To avoid instrumentation, hardware trace is an option, ma-
terialized by the ARM Embedded Trace Macrocell (ETM),
is extremely popular. As shown in Figure 3, there is one
ARM ETM for each core. In hardware trace, special-purpose
logic watches the address, data and control signals within
the System-on-Chip (SoC) compresses that information and
emits to a trace buffer, which itself can be subdivided in to
three main categories: program/instruction trace; data trace;
and bus (or interconnect fabric) trace. The ARM ETM is thus
a non-intrusive observer.

In terms of cost, for program/instruction trace macrocells
can be quite small: only one byte/instruction/processor is

Volume xx, Number y, May 2018 Ada User Jour na l

J. Ruf ino 3

required. Unfortunately, the cost of implementing data trace
is highest: trace macrocells need to be larger, data is more
difficult to compress (data trace from an ARM ETM typically
requires 1-2 bytes/instruction/processor). Each captured trace
data have attached a timestamp.

The collected data is replicated and presented in two different
resources: an internal (on-chip) embedded trace buffer; a trace
port allowing the captured data to be externally processed.

3.3 SPARC LEON: Dedicated Observer
The next system we analyse is embedded in a SoC system
with a LEON processor [26], a SPARC CPU [27], embodying
a state-of-the-art computing architecture. The LEON is the
reference architecture for European Space applications, e.g.
satellites, being also used in other real-time control applica-
tions. The SoC bus is the AMBA bus [28]. A block diagram
with the global system is presented in Figure 4.

Processing
Element

Memory
Controller

I/O Interface

Timer Unit

Memory

AMBA bus

Input/Outpt

I/O Interface

Observer
Entity

Interrupt
Controller

Figure 4: SPARC LEON processor and Observer Entity.

Since SPARC LEON does not have specific tools for code
observation and tracing, one have designed one (also shown
in Figure 4). The Observer Entity (OE) infrastructure can
observe the AMBA bus and capture a set of relevant events: in-
struction fetch; memory read/write cycles; interrupt requests.
Alternatively, the OE can be plugged in a cache internal bus,
for a more precise observation.

Figure 5: Observer Entity Architecture.

The OE is specified in VHDL2 and the event capture is in-
dependent and made in parallel with the operation of the
functional system. Therefore, the OE integrates all the mech-
anisms required for a non-intrusive observation. The monitor
option supports non-intrusive runtime verification.

2Very High-Speed Integrated Circuit Description Language.

The OE comprises the modules of Figure 5: Bus Interfaces,
capturing all physical bus activity, such as bus transfers or
interrupt vectors; Management Interface, enabling observer
entity configuration; Configuration, storing a dynamically
defined set of events; the System Observer itself, detecting
events of interest; Monitor, which detects possible violations
to the specified system behaviour; Time Base, which allows
to time stamp the events of interest.

4 Evaluation
An example of a runtime monitoring function is presented
next, assuming the use of a SPARC LEON processor; as
software counterpart an application running on the RTEMS
real-time operating system is used [29]. The software system
under evaluation is composed by a task, named Task Sine,
which produces a sine wave with a given frequency.

The task is executed periodically, with a 50 ms period. The
monitoring aims at measuring the execution time of the task
as well as its amplitude. Both the execution time and the am-
plitude are monitored. This data is represented in a graphical
manner through Figure 6, together with a table containing its
statistical analysis. The null competition for the processing
resources allows Task Sine to exhibit a somewhat stable
execution time, i.e. with low variance. In this experiment,
given the monitoring bounds, no error is detected. This will
not be the case if the monitoring values have a lower bound.

 5550

 5600

 5650

 5700

 5750

 5800

 5850

 0 2 4 6 8 10 12 14

T
as

k
E

xe
cu

tio
n

T
im

e
(u

s)

Time (s)

Task Sine

Minimum Maximum Average Std. Deviation
µs µs µs

5603.180 5787.240 5719.536 22.686

Figure 6: Task Execution Time Measurement

5 Conclusion
This paper reviews classical processor technology to under-
stand which kind of support is provided on each processor
family (Intel, ARM and SPARC LEON), its intrusiveness,
functionality and offered system support.

Each processor family was reviewed and we characterize the
offered support to observation. Together with this, we address
the non-intrusiveness and functionality.

For the SPARC LEON, which received a freshly designed
non-intrusive runtime verification scheme, we have conducted
a very simple experiment that evaluate the proposal.

Ada User Jour na l Vo lume xx, Number y, May 2018

4 NIRV Review

References
[1] M. E. Shobaki and L. Lindh, “A hardware and software

monitor for high-level system-on-chip verification,” in
Proceedings of the 2nd IEEE International Symposium
on Quality Electronic Design (ISQED 2001), (San Jose,
CA, USA), pp. 56–61, Mar. 2001.

[2] L. Pike, S. Niller, and N. Wegmann, “Runtime verifi-
cation for ultra-critical systems,” in 2nd International
Conference on Runtime Verification (RV 2011), (San
Francisco, USA), pp. 310–324, Springer, Sept. 2011.

[3] J. C. Lee and R. Lysecky, “System-level observation
framework for non-intrusive runtime monitoring of em-
bedded systems,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 20, no. 42, 2015.

[4] J. Gait, “A probe effect in concurrent programs,” Soft-
ware - Practise and Experience, vol. 16, Mar. 1986.

[5] T. Lundqvist and P. Stenstrom, “Timing anomalies in
dynamically scheduled microprocessors,” in Proc. of the
20th Real-Time Systems Symposium, IEEE, Dec. 1999.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom, “The worst-case execu-
tion time problem - overview of methods and survey
of tools,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 7, Apr. 2008.

[7] T. H. Nam, Cache Memory Aware Priority Assignment
and Scheduling Simulation of Real-Time Embedded Sys-
tems. PhD thesis, Université de Bretagne Occidentale,
Brest, France, Jan. 2017.

[8] C. Watterson and D. Heffernan, “Runtime verification
and monitoring of embedded systems,” IET software,
vol. 1, pp. 172–179, Oct. 2007.

[9] R. Backasch, C. Hockberger, A. Weiss, M. Leucker, and
R. Lasslop, “Runtime verification for multicore SoC
with high-quality trace data,” ACM Trans. on Design
Automation of Electronic Systems, vol. 18, Mar. 2013.

[10] R. C. Pinto and J. Rufino, “Towards non-invasive run-
time verification of real-time systems,” in Proc. 26th
Euromicro Conf. on Real-Time Systems - WIP Session,
(Madrid, Spain), pp. 25–28, Euromicro, July 2014.

[11] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime veri-
fication of embedded real-time systems,” Formal Meth-
ods in System Design, vol. 24, pp. 203–239, June 2014.

[12] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu,
“Hardware runtime monitoring for dependable cots-
based real-time embedded systems,” in Proceedings
of the Real-Time Systems Symposium (RTSS 2008),
(Barcelona, Spain), pp. 481–491, IEEE, Nov. 2008.

[13] A. Kane, O. Chowdhury, A. Datta, and P. Koopman,
“A case study on runtime monitoring of an autonomous
research vehicle (ARV) system,” in Proc. 15th Int. Conf.
on Runtime Verification, vol. 9333 of LNCS, (Vienna,
Austria), pp. 102–117, Springer, Sept. 2015.

[14] T. Reinbacher, K. Y. Rozier, and J. Schumann,
“Temporal-logic based runtime observer pairs for system
health management of real-time systems,” in Proc. 20th
Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), vol. 8413 of LNCS,
(Grenoble, France), pp. 357–372, Springer, Apr. 2014.

[15] J. C. Lee, A. S. Gardner, and R. Lysecky, “Hardware
observability framework for minimally intrusive online
monitoring of embedded systems,” in Proc. 18th Int.
Conf. on Engineering of Computer Based Systems, (Las
Vegas, USA), pp. 52–60, IEEE, Apr. 2011.

[16] G. Callow, G. Watson, and R. Kalawsky, “System mod-
elling for run-time verification and validation of autono-
mous systems,” in Proc. 5th Int. Conf. on System of
Systems Engineering, (Loughborough, UK), June 2010.

[17] S. Cotard, S. Faucou, J.-L. Bechennec, A. Queudet, and
Y. Trinquet, “A data flow monitoring service based on
runtime verification for AUTOSAR,” in Proceedings of
the 14th Int. Conf. on High Performance Computing and
Communications, (Liverpol, UK), IEEE, June 2012.

[18] A. Kane, Runtime Monitoring for Safety-Critical Embed-
ded Systems. PhD thesis, Carnegie Mellon University,
USA, Feb. 2015.

[19] S. Jaksic, M. Leucker, D. Li, and V. Stolz, “COEMS -
open traces from the industry,” in Proc. of Int. Workshop
on Competitions, Usability, Benchmarks, Evaluation,
and Standardisation for Runtime Verification Tools (RV-
CuBES 2017), vol. 3, (Seatle, USA.), Sept. 2017.

[20] G. Reger and K. Havelund, “What is a trace? a runtime
verification perspective,” in Proc. of 7th Int. ISoLA 2016
- Leveraging Applications of Formal Methods, Verifica-
tion and Validation (T. Margaria and B. Steffen, eds.),
vol. LNCS 9953, (Corfu, Greece), Oct. 2016.

[21] J. Reinders, Intel Processor Tracing. Intel Corporation,
Sept. 2013.

[22] Intel, Intel Architecture Instruction Set Extensions Pro-
gramming Reference, 319433-017 ed., Dec. 2013.

[23] W. Orme, “Debug and trace for multicore SoCs.” ARM
White paper, Sept. 2008.

[24] “CoreSight technical introduction: a quickstart for de-
signers.” ARM White paper EPM-039795, Aug. 2013.

[25] ARM, Cambridge, England, ARM CoreSight Architec-
ture Specification, 2.0 ed., Sept. 2013.

[26] Aeroflex Gaisler A.B., GRLIB IP Library User’s Man-
ual, Apr. 2014.

[27] SPARC International Inc., The SPARC Architecture
Manual, 1992.

[28] ARM Limited, AMBATM Specification. ARM, May
1999.

[29] RTEMS: Real-Time Executive for Multiprocessor Sys-
tems - User Manual, release 5.0.0 (master) ed., 2017.
http://www.rtems.org.

Volume xx, Number y, May 2018 Ada User Jour na l

