
1

Non-intrusive Observation and Runtime
Verification of Avionic Systems∗

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Abstract

Unmanned autonomous systems (UAS) avionics call
for advanced computing system architectures fulfilling
strict size, weight and power consumption (SWaP) req-
uisites. The AIR (ARINC 653 in Space Real-Time Oper-
ating System) defines a partitioned environment for the
development and execution of aerospace applications,
preserving application timing and safety requisites.

This paper intensively explores the potential of non-
intrusive runtime verification (NIRV) mechanisms, cur-
rently being included in AIR, to the overall improvement
of system safety.

1 Introduction and Motivation
Avionic systems have strict safety and timeliness require-
ments as well as strong size, weight and power consumption
(SWaP) constraints. Modern unmanned autonomous systems
(UAS) avionics follow the civil aviation trend of transitioning
from federated architectures to Integrated Modular Avionics
(IMA) [1] and resort to the use of partitioning.

Partitioning implement the logical separation of applications
in criticality domains, that we named partitions, and allow
hosting both avionic and payload functions in the same com-
putational infrastructure [2, 3].

However, partitioned architectures in general, and those de-
signed using AIR (ARINC 653 in Space Real-Time Operat-
ing System) [4], in particular, tend to have their complexity
and may largely benefit of their combination with a runtime
verification and monitoring infrastructure [5].

This paper explains how fundamental runtime verification
(RV) mechanisms can be combined with advanced time- and
space-partitioned (TSP) systems. To reduce the temporal over-
head of such mechanisms in the operation of onboard systems
an innovative non-intrusive design approach is followed.

The paper is organized as follows. Section 2 describes the
non-intrusive RV features being introduced while Section 3

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).

presents the AIR architecture for TSP systems. Section 4
describes how to integrate RV mechanisms with the AIR
architecture and Section 5 performs their evaluation. Sec-
tion 6 describes the related work and, finally, Section 7 issues
concluding remarks and future research directions.

2 Mechanisms for Non-intrusive
Observation and Runtime Verification

Runtime verification obtains and analyses data from the exe-
cution of a system to detect and possibly react to behaviours,
either satisfying or violating the system specification. Run-
time verification implies that small components, which are not
part of the functional system, acting as observers, are added
to monitor and assess the state of the system in runtime.

Computer Hardware
Platform

Software

Runtime
Verification

Hardware

instrumentation

Non-intrusive

observation Verdict

TSP

system

Figure 1: Non-intrusive observer and runtime verification.

The usage of reconfigurable logic supporting versatile plat-
form designs (e.g., soft-processors), as depicted in Figure 1,
enables innovative approaches to RV [6]. In the context
of TSP systems: the computer hardware platform is instru-
mented with non-intrusive observers; the runtime verification
is secured by an independent hardware module, with no sys-
tem actions (unless there is an error).

An enhanced AIR architecture uses an AIR Observer and
Monitor (AOM) featuring: non-intrusiveness, meaning sys-
tem operation is not adversely affected and code instrumenta-
tion with RV probes is not required; configurable, being able
to accommodate different event observations.

The AOM hardware is plugged to the platform where the AIR
software components execute, and comprises the modules
depicted in Figure 2: bus interfaces, capturing all physical
bus activity, such as system bus and cache bus transfers or
interrupts; management interface, enabling AOM configu-
ration; configuration, storing the patterns of the events to
be detected; observer, detecting events of interest based on
the registered configurations and monitor, performing the
required runtime verification actions.

Ada User Jour na l Vo lume xx, Number y, May 2018

2 NIRV of Av ion ic Systems

Configuration

Bus

Interfaces

System Clock

B
u

s
e

s

Mgmt.

Interface

Time Base
currentTicks

other variables/registers

Observer &

Monitor

Figure 2: AIR Observer and Monitor architecture.

Though RV concepts can be applied to both time and space
partitioning, this paper is restricted to temporal issues. Thus,
it is assumed that a robust time base1 accounts for, in the
AOM hardware (Figure 2), the number of POS-level clock
ticks elapsed so far, to which AIR components have access,
through the read only currentT icks variable/register (used
in Algorithm 1). Other variable/registers may need to be
stored within the scope of the AOM hardware.

3 AIR Technology for TSP systems
The AIR design aims at providing high levels of flexibil-
ity, hardware- and OS-independence, easy integration and
independent component verification, validation and certifica-
tion [4]. The AIR architecture is depicted in Figure 3.

The AIR Partition Management Kernel (PMK) is a core soft-
ware layer, enforcing robust TSP properties, together with
partition scheduling and dispatching, low-level interrupt man-
agement, and interpartition communication support. Robust
TSP implies that the execution of functions in one partition
does not affect other partitions’ timeliness and that separated
addressing spaces are assigned to different partitions.

Each partition can host a different OS (the partition operating
system, POS), which in turn can be either a real-time operat-
ing system (RTOS) or a generic non-real-time one. The AIR
POS Adaptation Layer (PAL) encapsulates the POS of each
partition, providing an adequate POS-independent interface.

The Portable Application Executive (APEX) interface [7]
provides a standard programming interface derived from the
ARINC 653 specification [1], with the possibility of being
subsetted and/or adding specific functional extensions for
certain partitions [8].

The architecture of Figure 3 also includes the AOM hardware
module that we will intensively exploit in our design.

4 Integrating Non-intrusive Observation
and Runtime Verification

The integration of RV features in the AIR architecture is, in
essence, concerned with the operation of the AIR Partition
Scheduler and Dispatcher and uses a dual approach:

• operation enforced in hardware, either totally or with
some degree of assistance from software components,
being the RV actions performed in software, being this
kind of action only seldom used;

1The design and engineering of AIR robust timers is out of the scope of
this paper. It will be addressed in a future work.

Hardware

Core Software Layer

Application Software Layer

RTOS

Kernel

RTOS

Kernel
System Specific

Functions

RTOS

Kernel
System Specific

Functions

Generic

OS Kernel

APEX Interface APEX Interface APEX Interface APEX Interface (subset)

…....................
System

Partition 1

System

Partition K

Application

Partition 1

Application

Partition N
……...

ARINC 653 Partition Management Kernel (PMK)

RTOS

Kernel

POS Adaptation Layer POS Adaptation LayerPOS Adaptation

Layer

POS Adaptation

Layer

AOM Hardware

Figure 3: AIR architecture with AOM hardware.

• operation achieved through the execution of software
components, with RV actions enforced in hardware, the
normal operating behaviour.

4.1 Partition scheduling

The original ARINC 653 notion of a single fixed Partition
Scheduling Table (PST) [1], defined offline, is limited in terms
of timeliness, as well as safety and fault-tolerance control. To
address this primary limitation, the AIR design incorporates
the notion of mode-based partition schedules, inspired by
the optional service defined within the scope of ARINC 653
Part 2 specification [9].

The system can now be configured with multiple PSTs, which
may differ in terms of their Major Time Frame (MTF) du-
ration. The different PSTs may specify which partitions are
scheduled on each mission phase, and of how much processor
time is assigned to them [4], as shown in Figure 4. The system
can then switch between these PSTs; a PST switch request is
only effectively granted at the end of the ongoing MTF [4].

4.2 Mode-based schedules

The AIR RV architecture uses an hardware-assisted approach
for selecting the partition scheduling switch instants, which
are programmed at the AOM, whenever a partition is dis-
patched: the next partition preemption point is inserted in the
AOM configuration; when this instant is reached, an AOM’s
hardware exception triggers the execution of Algorithm 1.

The RV actions of Algorithm 1 check, from the active PST,
if the current instant is a partition preemption point (line 3).
If that is not the case, a severe system level error has oc-
curred and the Health Monitor is notified (line 4) to handle
the situation. The AIR Health Monitor is a component, not
represented in Figure 3, that aims to contain faults within their
domains of occurrence, to provide the corresponding error
handling capabilities and that it spreads throughout virtually
all of the AIR architectural components. The remaining lines
(6-12) implement the partition switch actions of [4], checking

PMK

Partition Dispatcher

Partition Scheduler

AIR PAL

Partition Scheduling Tables

(PST)

Mode-based Schedules

mission phase

150 190

First hierarchy level

Partition Scheduler

0 20 60 130

Major Time Frame (MTF)

Partition P1 Partition P2 Partition P3

mode

PST selection PST3(N)

(Inactive)

PST3(S)

(Inactive)

PST3(R)

(Inactive)

PST2(N)

(Inactive)

PST2(S)

(Inactive)

PST2(R)

(Inactive)

PST11
mode: normal

(active)

PST12
mode: survival

(inactive)

PST13
mode: recovery

(inactive)

Figure 4: Partition scheduling featuring mode-based schedules.

Volume xx, Number y, May 2018 Ada User Jour na l

J. Ruf ino 3

Algorithm 1 AIR Partition Scheduler, with Runtime Verifica-
tion featuring mode-based schedules
1: � Entered upon exception: partition preemption point detected
2: � Runtime verification actions
3: if schedulescurrentSchedule .tabletableIterator .tick 6=

(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf then

4: HEALTHMONITOR(activePartition)

5: else � Partition switch actions
6: if currentSchedule 6= nextSchedule ∧

(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf = 0 then

7: currentSchedule ← nextSchedule
8: lastScheduleSwitch ← currentTicks
9: tableIterator ← 0

10: end if
11: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition
12: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
13: end if

Algorithm 2 AIR Partition Dispatcher, with Runtime Verifi-
cation updating partition preemption points
1: � Entered from the AIR Partition Scheduler after partition switch actions
2: SAVECONTEXT(activePartition.context)
3: activePartition.lastTick ← currentTicks − 1
4: elapsedTicks ← currentTicks − heirPartition.lastTick
5: activePartition ← heirPartition
6: REPLACEPREEMPTIONPOINT(heirPartition.tick)
7: RESTORECONTEXT(heirPartition.context)

(line 6) if there is a pending scheduling switch to be applied
and the current instant is the end of the MTF. If these condi-
tions apply, a different PST will be used henceforth (line 7).
The processing resources are assigned to the heir partition, ob-
tained (line 11) from the PST in use. The Partition Scheduler
is set (line 12) to access the heir partition parameters.

4.3 Partition dispatching
The execution is followed by the AIR RV Partition Dispatcher
specified in Algorithm 2. Two significant differences do exist
from the software-based approach of [4]: elapsed clock ticks
settings is no longer needed because the partition dispatcher
is always invoked after a partition switch; insertion of the next
partition preemption point in the hardware-assisted AOM con-
figuration (line 6). The remaining actions in Algorithm 2 are
related to saving and restoring the execution context (lines 2
and 7) and evaluation of the elapsed clock ticks (line 4).

4.4 Observation of application components
Besides the AIR RV Partition Scheduler and Dispatcher, two
fundamental parts of our system, one dedicate our attention to
the monitoring of other components, such as the applications.
Through the use of the AOM module, observation and mon-
itoring continues to be non-intrusive. This is done through
Algorithm 3, the AIR Event Observer.

The AOM observes the Bus, compares (line 6) the trans-
fer operations Bus.trf with a configured set of observation
points, Config. Upon match, it sends a piece of information
to the external system (line 9). This piece of information is an
event, being comprised of: the time-stamp of the occurrence;
the id of the event, specified in the configuration (lines 7-8).
The numTick value (line 4) is incremented at every system
clock tick, and used as the event time-stamp.

Algorithm 3 AIR Event Observer
1: � Input: Clock - system_clock_tick; Bus - raw event
2: � Output: Event - event
3: for system_clock_tick do
4: numTicks← numTicks + 1
5: if newEvent(Bus) then
6: if ∃ id ∈ Config : Config[id] = Bus.trf then
7: event.time← numTicks
8: event.id ← id
9: outputEvent(event)

10: end if
11: end if
12: end for

5 Evaluation: analysis and discussion
One relevant metric for code complexity is its size, in lines of
source code. The standardized accounting method one employ
is the logical source lines of code (logical SLOC) metric of
the Unified CodeCount tool [11]. The C implementation
of fundamental AIR components, such as the AIR Partition
Scheduler and Dispatcher, is assessed in Table 1, which shows
its logical SLOC count along with the entity instantiating the
component, and implicitly, the instantiation frequency. The
data show a reduction of code complexity.

0,00000

0,00004

0,00008

0,00012

0,00016

10 30 50 70 90 110 130 150 170 190P
ro

ce
ss

in
g

o
ve

rh
ea

d
 d

if
fe

re
n

ce
 (

v)

TMTF (time units)

Parameters: nppp = 6; TSD = 0,00015 time units; Ttick = 1 time unit

Full hardware AIR Partition Scheduler/Dispatcher

Hardware-assisted AIR Partition Scheduler/Dispatcher

Figure 5: Analysis of processing time overheads.

With respect timing issues, comparing the normalised pro-
cessing time overheads of AIR Partition Scheduler and Dis-
patcher (TSD), in the software-based and hardware-assisted
approaches, along a full normalised MTF period (TMTF):

υ ≈ TSD_Soft

Tsys_tick
− TSD_Hard

TMTF
. nppp (1)

where, nppp is the number of partition preemption points in
the MTF and Tsys_tick is the normalised POS-level clock tick.
The normalisation of timing parameters in Figure 5 take the
experimental values TSD_Soft=150 ns and Tsys_tick=1 ms
as references, making TSD_Hard ≈TSD_Soft for hardware-
assisted and TSD_Hard=0 for a full hardware implementa-
tion of the AIR Partition Scheduler/Dispatcher [12].

To exemplify the use of AIR AOM hardware in the observa-
tion/monitoring of several events, one considerer the Attitude
and Orbit Control Subsystem (AOCS) function of a Low Earth
Orbit (LEO) satellite. The Cartesian coordinates are used to
evaluate the satellite position:

(x− ux)2 + (y − uy)2 + (z − uz)2 ≤ (δd)
2 (2)

where, (x, y, z) are the real position of the satellite and
(ux, uy, uz) are the specified satellite position; the value δd
defines a specified maximum distance deviation.

Ada User Jour na l Vo lume xx, Number y, May 2018

4 NIRV of Av ion ic Systems

Table 1: Logical SLOC metrics and instantiation entities for fundamental AIR software components.

Logical SLOC Instantiation

Software-based AIR Partition Scheduler (specified an analysed in [4, 10]) 13 POS-level clock tick

Software-based AIR Dispatcher (specified an analysed in [4, 10]) 10 POS-level clock tick

Hardware-assisted AIR RV Partition Scheduler (specified in Algorithm 1) 12 partition preemption point

Hardware-assisted AIR RV Dispatcher (specified in Algorithm 2) 8 partition preemption point

The real position of the satellite is read and compared with
the specified position. This difference should be kept below a
given and specified threshold. If a violation occurs, such an
event will be signalled to the AIR Health Monitor.

The synthesis of a monitor can be ensured with TeSSLa [13],
a Temporal Stream-based Specification Language, which is
specially designed for specifying correct program executions.

6 Related Work
Approaches to flexible scheduling in TSP systems are re-
stricted to the mode-based scheduling of the commercial
Wind River VxWorks 653 product [14]. Alternatives to
TSP/IMA are compared in [15], which includes recommen-
dations for adaptation of IMA-like solutions. Emergence of
non-intrusive runtime verification techniques for embedded
systems in general is addressed in [16, 17], while its applica-
bility to complex safety-critical systems is presented in [18].
However, no previous work have applied such techniques to
the realm of TSP systems.

7 Conclusion
This paper addressed how mechanisms providing support to
the AIR architecture for time- and space-partitioned systems
can be designed and engineered. The usage of a non-intrusive
AIR Observer and Monitor allows not only the monitoring
of fundamental AIR components but also of generic events.
Non-intrusive runtime verification is a relevant contribution
with respect to verification, validation and certification efforts
of TSP systems that will be extended in future research.

References
[1] AEEC (Airlines Electronic Engineering Committee),

Avionics Application Software Standard Interface, Part
1 - Required Services, Mar. 2006.

[2] TSP Working Group, “Avionics time and space partition-
ing user needs,” Technical Note TEC-SW/09-247/JW,
ESA, Aug. 2009.

[3] J. Rushby, “Partitioning in avionics architectures: Re-
quirements, mechanisms and assurance,” Tech. Rep.
NASA CR-1999-209347, SRI International, June 1999.

[4] J. Rufino, J. Craveiro, and P. Verissimo, “Architect-
ing robustness and timeliness in a new generation of
aerospace systems,” in Architecting Dependable Sys-
tems VII, vol. 6420 of LNCS, Springer, 2010.

[5] M. Leucker and C. Schallhart, “A brief account of run-
time verification,” The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303, May-Jun 2009.

[6] R. C. Pinto and J. Rufino, “Towards non-invasive run-
time verification of real-time systems,” in 26th Euromi-
cro Conf. on Real-Time Systems - WIP Session, (Madrid,
Spain), pp. 25–28, July 2014.

[7] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and
J. Windsor, “A portable ARINC 653 standard interface,”
in Proc. 27th Digital Avionics Systems Conf., (St. Paul,
MN, USA), Oct. 2008.

[8] J. Rosa, J. P. Craveiro, and J. Rufino, “Safe online re-
configuration of time- and space-partitioned systems,”
in Proc. 9th IEEE Int. Conf. on Industrial Informatics
(INDIN 2011), (Caparica, Lisbon, Portugal), July 2011.

[9] AEEC (Airlines Electronic Engineering Committee),
Avionics Application Software Standard Interface, Part
2 - Extended Services, Dec. 2008.

[10] J. P. Craveiro and J. Rufino, “Adaptability support in
time- and space-partitioned aerospace systems,” in Proc.
2nd Int. Conf. on Adaptive and Self-adaptive Systems
and Applications, (Lisbon, Portugal), Nov. 2010.

[11] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A
SLOC counting standard,” in The 22nd Int. Ann. Forum
on COCOMO and Systems/Software Cost Modelling,
(Los Angeles, USA), 2007.

[12] J. Rufino, “Towards integration of adaptability and non-
intrusive runtime verification in avionic systems,” ACM
SIGBED Review, vol. 13, Jan. 2016.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and
A. Schramm, “TeSSLa: Runtime verification of non-
synchronized real-time streams,” in ACM Symp. on Ap-
plied Computing (SAC), (Pau, France), ACM, Apr. 2018.

[14] Wind River, “Wind River VxWorks 653 Platform 2.4
and 2.5,” 2015.

[15] B. Ford, P. Bull, A. Grigg, L. Guan, and I. Phillips,
“Adaptive architectures for future highly dependable,
real-time systems,” in Proc. 7th Ann. Conf. on Systems
Engineering Research, (Loughborough, UK), Apr. 2009.

[16] C. Watterson and D. Heffernan, “Runtime verification
and monitoring of embedded systems,” Software, IET,
vol. 1, pp. 172–179, October 2007.

[17] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime veri-
fication of embedded real-time systems,” Formal Meth-
ods in System Design, vol. 24, no. 3, pp. 203–239, 2014.

[18] A. Kane, Runtime Monitoring for Safety-Critical Embed-
ded Systems. PhD thesis, Carnegie Mellon University,
USA, Feb. 2015.

Volume xx, Number y, May 2018 Ada User Jour na l

