
G-NAV
Soaring the clouds
with AdaWebPack
The adventure of developing a new soaring
application based on Ada, WASM and
WebGL

Guillermo Augusto Hazebrouck

● Aeronautical engineer (UNC / 2010)
● Argentina > Belgium
● ANSP (Ada developer)

What is soaring?
Flying without engine! Really?
Circling on the upwards air streams and

avoiding the downwards air streams.

Tactical sport!
Meteorology

Aircraft performance

Navigation skills

Flying skills

Confidence

Motivation
How far can I go?
The answer depends on:
● Altitude
● Topography
● Aircraft performance
● Direction to go
● Wind
● Sink

HARD TO ASSES FOR THE

HUMAN BRAIN

 Where am I allowed to fly?

Soaring computers
XCSoar ● Open source (2005)

● C++/C based
● Not in iOS
● Broad scope: multiple sensor

integration
● Desktop-like environment
● Huge community (love + passion)

SeeYou ● Commercial
● It looks great
● Feature rich
● Android + iOS

LXNav +
others

● Commercial
● Only available as dashboard

equipment

G-NAV
● Focus on mobile

(Android + iOS)
● Open source
● Restrict

dependencies
● Restrict scope
● Focus on simplicity
● Robustness
● Ada

G-NAV

LINUX
(x86-64)

RPi-4 (arm64) PWA (WASM)

● Ada native compiler (FSF)
● OpenGL ES
● GLWF / SDL2
● UDP / UART / Files

● Ada LLVM
● WASM
● WebGL
● Web API’s

2020
2021

2023
2024

Hobby project for fun Community project?

Project evolution

A
d

aW
eb

P
ac

k

Numerical
performance
model for
predictions

Sensors
● GPS
● Total pressure
● Static pressure
● Probe pressure

Data banks
● Topography

(20MB)
● ATC sectors
● References
● Aircrafts

Link
● Traffic
● Meteorology
● Sharing info

Elements of an EFIS

Interactive
graphical interface

Storage Processing Integration Connectivity

G-NAV
We want to have all this…

WASM module (Ada)JavaScript + HTML

● Loading WASM
module

● HMI definition
● HMI events
● Timer
● Web API’s

● Data structures
● Actual computations
● Rendering

G-NAV System architecture

The system is now divided in two worlds:

AS SMALL AS POSSIBLE!

ALMOST EVERYTHING IS
DONE HERE!

G-NAV
WASM (Ada)

Timed events
Process timer
Cache time

Load GNSS data

Initialize

Refresh drawing (?)

JS (embedded in the HTML)

Load WASM module

1s timer tick event
> Queue canvas refresh

Geolocation callback

Canvas refresh callback

Canvas touch callback
> Queue canvas refresh

Dispatch action to
active component

Data flow architecture

A
d

aW
eb

P
ac

k

W
eb

G
L

X
H

R

IN
T

E
R

FA
C

E

CORE

Functions and
data

structure

Data flow architectureG-NAV
To sum up:

● One timed event every 1 second + render
● All internal application events run synchronously with the timer
● Touch event + render
● Render only when necessary
● One GNSS input event (every update is injected ~ 1s)

ADA CODE RUNS IN A SINGLE THREAD

G-NAV

Flight

Timeline

Data structure

Only static buffers

No leaks

No overflow

Server side
pre-processing

No load-time errors

Transport efficiency

Parsing efficiency

Encapsulated data packages with object oriented structures

Maps

Terrain
(10 million nodes)

Layers

References

Route

Aircraft

Wind

Traffic

Dynamic allocation

G-NAV Static data transfer

AdaWebPack XHR APIFile system

Asynchronous XHR request

Create

Send

Loading

Ready

For the static data we work with a queue (FIFO) of asynchronous request
No requests in parallel to respect loading sequence

Process data

Allocated stream
element array

Keep processing timer while
downloading

PROCESS NEXT RESOURCE REQUEST

(XML HTTP Request)

G-NAV Dynamic data transfer

AdaWebPack XHR API

Asynchronous XHR request

Create

Send

Loading

Ready Process data

Allocated stream
element array

Keep processing timer while
downloading

Dynamic data is requested by cyclic polling: METAR and TRAFFIC

RENEW REQUEST PERIODICALLY

G-NAV Data transfer

BUG 1: AdaWebPack XHR restricts array buffers to 65 KB,
attempting to read larger requests will collapse the module.

BUG 2: when BUG1 is solved, memory allocation for the buffer
still seems to require multiples of 65 KB (the size of WASM pages).

BE AWARE OF THE NEXT ISSUES

In G-NAV, the original XHR package has been reshuffled!
Some changes must be proposed to AdaWebPack developers…

G-NAV

Service worker!

● The service worker intercepts the XHR requests and is able to provide local
cached content.

● Static content will be cached locally by the browser after first arrival and it will be
served locally afterwards. This is very efficient! Almost like reading from the file
system.

● Dynamic content (traffic + metar) is still always directed to the web server.

XHR offline?

It feels like a native
application!

WHAT TO DO WHEN THERE IS NO CONNECTION?

G-NAV

Local Storage web APIUser configuration?

● Temporal configuration can be stored locally so that it is restored after reopening
the app.

● Local storage is a list of key/value pairs.
● This has been included as a binding in the adawebpack.msj file.

In Ada, the binding looks simply like this:
function Get_Item (Key : String) return String;
procedure Set_Item (Key : String; Value : String);

WHAT DO WE DO WITH THE LOCAL CONFIGURATION?

This could be

included in

AdaWebPack!

 __adawebpack__storage__setItem: function(key_address, key_size, value_address, value_size) {
window.localStorage.setItem(string_to_js(key_address, key_size), string_to_js(value_address,

value_size));
 },
 __adawebpack__storage__getItem: function(key_address, key_size) {

return string_to_wasm(window.localStorage.getItem(string_to_js(key_address, key_size)));
 }

G-NAV Graphics

100% WebGL vector graphics

Basic buffers

GLEX library

Lines

Fonts

Colormap buffers

Widgets

Panel

Frame

Button

Buffer_Type

G-NAV Graphics

GLEX: a library on top of WebGL that is easier to use

Move_To/Line_To

Reset

Load_Node

Load

Resource_Type

Draw

WebGL API

Resource

G-NAV Graphics

Little example of GLEX library… note how GL complexity is hidden:

L1 : Resource_Type; -- Static resources (it hides a GL buffer ID)
L2 : Resource_Type;
...
declare
 B : Buffer_Type := New_Line_Buffer (Lines => 2); --> Reserved
begin
 B.Move_To (0.0, 0.0); --> Prepare
 B.Line_To (0.0, 1.0); --> Construct 1st line in triangles
 L1.Load (B); --> Load into GPU
 B.Move_To (1.0, 1.0); --> Prepare
 B.Line_To (1.0, 0.0); --> Construct 2nd line in triangles
 L2.Load (B); --> Load into GPU
end;
L1.Draw (...); --> Draw the triangles
L2.Draw (...); --> Draw the triangles
...

Find more details in

the source code!

G-NAV Graphics

Widgets: an object oriented API for a simple GUI

Widget

Button

Frame
Keyboard

Dialog

Basic Composed

Readability
Consistency
Organization

Fanciness

Page A

G-NAV Graphics

Widgets: not driven by events (not like GTK)
Pages pass the event directly to their child's

Button 1

Frame 1

Button 2

Page B

Button 1

Frame 1

Button 2

Page C

Button 1

Frame 1

Button 2

Thank you

