
HiRTOS: A Multi-Core RTOS
written in SPARK Ada

J. Germán Rivera
(jgrivera67@gmail.com)

1

2HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

Topics

• HiRTOS Design Overview
• HiRTOS Thread Scheduler
• HiRTOS Separation Kernel
• Porting HiRTOS to a New Platform
• Future Work

3HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

What is HiRTOS?

• HiRTOS: High-Integrity RTOS
• A small real-time operating system kernel and separation kernel written in
 SPARK Ada
• HiRTOS targets deeply embedded software applications that run in small

single-core and multi-core embedded platforms
• HiRTOS won the “2023 Alire Embedded Crate of the Year” award

• HiRTOS is available for download as two Alire crates:
• HiRTOS kernel at https://alire.ada.dev/crates/hirtos
• HiRTOS separation kernel at

https://alire.ada.dev/crates/hirtos_separation_kernel
• HiRTOS code is available in GitHub at

https://github.com/jgrivera67/HiRTOS

https://alire.ada.dev/crates/hirtos
https://alire.ada.dev/crates/hirtos_separation_kernel
https://github.com/jgrivera67/HiRTOS

5HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Design Overview
• In a multi-core platform, there is one HiRTOS instance per CPU.

• Each HiRTOS instance is independent of each other. No resources are
shared between CPUs.
• No communication/synchronization between CPU cores is supported by

HiRTOS.
• Mutexes and condition variables are the only synchronization
 primitives in HiRTOS

• Other synchronization primitives such as semaphores, event flags and
 message queues can be implemented on top of mutexes and condition
 variables.

• HiRTOS mutexes support both priority inheritance and priority
 ceiling protocols.

6HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Design Overview (2)

• HiRTOS condition variables can also be waited on while having
interrupts disabled, not just while holding a mutex.
• This prevents missing ”thread wakeups”, when signaling condition
 variables from interrupt service routines. (Semaphore not needed)

• HiRTOS atomic levels can be used to disable the thread
 scheduler or to disable interrupts at and below a given priority or to
 disable all interrupts.
• Threads are bound to the CPU core in which they were created,

for the lifetime of the thread.
• No thread migration between CPU cores is supported

7HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Design Overview (3)

• All RTOS objects such as threads, mutexes and condition
variables are allocated internally by HiRTOS from statically
allocated internal object arrays
• Once allocated, RTOS objects cannot be deallocated
• RTOS object handles provided to application code are just indices into

these internal object arrays.
• All application threads run in unprivileged mode by default.
• In unprivileged mode, a thread can only access its own stack.
• To access global variables or MMIO space, application threads

must explicitly request permission to HiRTOS.

8HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Design Overview (4)
• HiRTOS pointer-less data structures

Arrays of RTOS objects

pointer-less linked lists

Arrays of nodes for
linked lists of the

corresponding type

pointer-less linked lists

pointer-less
linked lists

9HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Design Overview (5)
• HiRTOS pointer-less linked lists

Backing storage for all the linked lists (pairs of
next/prev injec@ve func@ons) of a given type
Backing storage for all the linked lists (pairs of

“next/prev” injec@ve func@ons) of a given type

10HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Supported Platforms

• ARM Fixed Virtual Platform (FVP) Simulator for ARMv8-R (ARM
Cortex-R52 processor with 4 cores)

11HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Supported Platforms (2)

• ARM Cortex-R52-SMP Renode Simulator configuration (2 cores)

12HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Supported Platforms (3)

• RISC-V-based ESP32-C3 board (single-core)

13HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Usage Architecture Vision
• Using HiRTOS from C/C++ • Using HiRTOS from Ada

14HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Code Architecture

15HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler

• HIRTOS Thread Scheduler Ini@aliza@on

16HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (2)

• HIRTOS Thread Scheduler Ini@aliza@on (cont.)

highest priority
 thread stack

17HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (3)

• Asynchronous Thread Context Switch
• In HiRTOS, thread preemp3on is implemented by invoking the thread scheduler

on the exit path of an interrupt handler.
• When an interrupt fires while a thread is running, the execu3ng thread’s CPU

context is saved on thread’s stack by the interrupt handler prolog.
• Then, before calling the actual interrupt handler, the stack is switched to the

interrupt handling stack. AIer the interrupt handler returns, the interrupt
handler epilog invokes the HiRTOS thread scheduler, to select the highest

 priority runnable thread.
• Then, if the newly selected thread is different from the one that was running

before the interrupt, the extended context of the old thread is saved and the
extended context of the new thread is restored.

18HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (4)

• Asynchronous Thread Context Switch (cont.)

Interrupt handling stack

New thread stack

19HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (5)

• Asynchronous Thread Context Switch (cont.)

20HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (6)
• In HiRTOS, a synchronous thread context switch occurs when:
• A thread calls HiRTOS.Condvar.Wait
• A thread calls HiRTOS.Condvar.Signal or HiRTOS.Condvar.Broadcast,
 and there are threads wai<ng on the condi<on variable
• A thread calls HiRTOS.Mutex.Acquire and the mutex is not available
• A thread calls HiRTOs.Mutex.Release and there are threads wai<ng to
 acquire the mutex
• A thread calls HiRTOS.Thread.Thread_Delay_Un<l (which calls

HiRTOS.Condvar.Wait)
• A thread calls HiRTOS.Thread.Suspend_Current_Thread
• A thread calls HiRTOS.Thread.Resume_Thread
• A thread calls HiRTOS.Restore_Atomic_Level and the old atomic level is

Atomic_Level_None

21HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (7)

• Synchronous Thread Context Switch

22HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Thread Scheduler (8)

• Synchronous Thread Context Switch (cont.)

Interrupt handling stack

New thread stack

23HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Separation Kernel Overview
• A separation kernel can be seen as an RTOS that schedules partitions
 instead of threads

• CPU needs to support hypervisor privilege mode and two-stage memory
 protection

• A partition is a spatial and temporal separation/isolation unit on which a
bare-metal or RTOS-based application runs.
• Each partition consists of one or more address ranges covering disjoint

portions of RAM and MMIO space that only that partition can access
• HiRTOS uses the hypervisor-controlled MPU to enforce isolation

between partitions “address spaces”
• Each partition can only use the supervisor-controlled MPU within its

own address space

24HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Separation Kernel Overview (2)
• Each partition also has its own interrupt vector table and its own set of

physical interrupts.
• Physical peripherals can be assigned to individual partitions (discrete device

assignment).
• No device virtualization is supported.

• In a multi-core platform, there is one separation kernel instance per
CPU Core.
• Each instance is independent of each other. No resources are shared.
• The CPU core is time-sliced among the partitions running on the same
 separation kernel instance.
• Partitions are bound to the CPU core in which they were created.
• Partitions are created at boot time before starting the partition scheduler on
 the corresponding CPU core. Partitions cannot be destroyed or terminated.

25HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Separation Kernel Overview (3)

• The separation kernel code itself runs in hypervisor privilege
mode.
• All partitions run at a privilege lower than hypervisor mode.

Partitions can communicate with the separation kernel via
hypervisor calls
• Inter-partition communication is not supported yet

• A shared-memory-based mailbox mechanism could be provided in the
future

26HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Separation Kernel Running on
ARM FVP Simulator for ARMv8-R

27HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

HiRTOS Separation Kernel Running on
Renode Simulator Configured for ARMv8-R

28HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

Porting HiRTOS to a new platform

• Implement CPU-architecture-specific interfaces for the new CPU
architecture, including:
• Startup code
• Interrupt handling prolog and epilog code
• Interrupt controller driver
• CPU-architecture-specific 3mer driver (if available)
• Memory protec3on unit (MPU) driver

• Implement plaLorm-specific interfaces for the new SoC or board,
including:
• UART driver
• External 3mer driver (if needed)
• PlaPorm-specific hardware ini3aliza3on

29HiRTOS: A Multi-Core RTOS written in SPARK Ada - © J. Germán Rivera

Future Work
• Change the idle thread to be a ”safety patrol” thread to check
 safety invariants and liveness properties during spare CPU cycles
• Add inter-core communication functionality to the HiRTOS kernel
• Add inter-partition communication functionality to the HiRTOS
 separation kernel
• Port HiRTOS to other embedded CPU architectures such as
 ARMv7-M, ARMv8-M, 64-bit ARMv8-R and 64-bit RISC-V
• Port The HiRTOS separation kernel to RISC-V platforms with
 Hypervisor mode
• Do Formal Verification of HiRTOS code using gnatprove

