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EuroHPC systems 
Status Country Peak performance Architecture

LUMI Operational Finland 539.13 petaflops 64-core AMD EPYC™ CPUs + 
AMD Instinct™ GPU

Leonardo Operational Italy 315.74 petaflops Intel Ice-Lake, Intel Sapphire 
Rapids + NVIDIA Ampere

MareNostrum 5 Operational Spain 295.81 petaflops Intel Sapphire Rapids, NVIDIA 
Hopper, NVIDIA Grace, Intel 
Emeralds, Intel Rialto 

Meluxina Operational Luxembour
g

18.29 petaflops  AMD EPYC + NVIDIA Ampere 
A100

Vega Operational Slovenia 10.05 petaflops AMD Epyc 7H12 +  Nvidia A100

Karolina Operational Czech Republic 12.91 petaflops AMD + Nvidia A100

Discoverer Operational Bulgaria 5.94 petaflops AMD EPYC

Deucalion Operational Portugal 5.01 petaflops A64FX, AMD EPYC, Nvidia 
Ampere

https://eurohpc-ju.europa.eu/about/our-supercomputers_en

JUPITER, First European Exascale 

Supercomputer announced to be installed 

in Jülich
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eFlows4HPC in a nutshell

• Software tools stack that makes easier the development 
and management of complex workflows: 
• Combine different aspects

• HPC, AI, data analytics
• Reactive and dynamic workflows

• Autonomous workflow steering 
• Full lifecycle management 

• Not just execution
• Data logistics and Deployment

• HPC Workflows as a Service: 
• Mechanisms to make easier the 

use and reuse of HPC by wider 
communities

• Architectural Optimizations:
• Selected HPC – AI Kernels Optimized for GPUs, FPGA, EPI

• Validation Pillar’s
• End-user workflows linked to CoEs





Dynamic Workflow Description

TOSCA Description

eFlows4HPC Gateway Services

Workflow 
Registry

Alien4CloudSoftware 
Catalog

3. Deploy

Data
Catalog

PyCOMPSs 
Code

Data Logistics
Pipelines

Endpoint to invoke 
the Workflow 

1. Create 
Workflow

4. share

Workflow development overview

2. Store

Computational Workflow as a simple Python script. 
Invocation of software described in the Software Catalog

Description of data movements as Python functions. 
Input/output datasets described at Data Catalog

Topology of the components involved in the workflow 
lifecycle and their relationship.



@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):
for k in range(MSIZE):

multiply (A[i][k], B[k][j], C[i][j])
compss_barrier()
mulTime = time.time() - startMulTime

Programming with PyCOMPSs/COMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Builds a task graph at runtime that 

express potential concurrency
• Tasks can be complex, parallel, even MPI 
• Offers a shared memory illusion to 

applications in a distributed system
• The application can address larger data

storage space: support for Big Data apps
• Agnostic of computing platform
• Provenance recording 
• Syntax extended to better integrate 

AI and HPDA 



PyCOMPSs features and runtime

• PyCOMPSs/COMPSs applications executed in distributed mode following the master-
worker paradigm
• Description of computational infrastructure in an XML file 

• Sequential execution starts in master node and tasks are offloaded to worker nodes 
• All data scheduling decisions and data transfers are performed by the runtime
• All data scheduling decisions

and data transfers are 
performed by the runtime
• Support for elasticity 



Heterogeneous Tasks
• A task can be more than a sequential function

• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically (@binary)
• Supports for alternative programming models: MPI (@mpi)

• Can be combined with other decorators
• @constraint: To indicate amount of memory, number of processors or GPUs per binary 

or MPI process
• @container: When software is distributed as a container

@container(engine=‘SINGULARITY’, image=“/path/to/app.sif”)
@binary(binary=“app.bin” args=“—in {{f_in}} –out {{f_out}})
@task(f_in=FILE_IN, f_out=FILE_OUT)
def app_task(f_in, f_out):
    pass

@binary(binary=“app.bin” args=“—in {{f_in}} –out {{f_out}})
@task(f_in=FILE_IN, f_out=FILE_OUT)
def app_task(f_in, f_out):
    pass

@constraint(processors=[{'processorType':'CPU','computingUnits':'1’}, 
{'processorType':'GPU', 'computingUnits':'1'}]) 

@task(returns=1) 
def func(a, b, c): 

... 
return result

@constraint (computingUnits= ”8")
@mpi (runner="mpirun", processes= ”16”, ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...) 
def nems(stdOutFile, stdErrFile):

pass



Failure management

• Interface than enables the programmer to give hints about failure management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE

• Implications on file management:
• i.e, on IGNORE, output files are generated empty

• Possibility of ignoring part of the execution of the workflow, for example if a task fails in an unstable 
device 

• Opens the possibility of dynamic workflow behaviour depending on the actual outcome of the tasks 

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS’,     
time_out=‘$task_timeout’)
def task(file_path):

...
if cond :

raise Exception()



Timeouts and exceptions

• Timeouts can be defined for a task

• Tasks can raise exceptions

• Combined with groups of tasks enables to cancel the 
group of tasks on the occurrence of an exception

@task(file_path=FILE_IN, time_out=200)
def time_out_task (file_path):

...

@task(file_path=FILE_INOUT)
def comp_task(file_path):

...
raise COMPSsException("Exception 

raised")

def test_cancellation(file_name):
try:

with TaskGroup('failedGroup’):
long_task(file_name)
long_task(file_name)
executed_task(file_name)
comp_task(file_name)
cancelledTask(FILE_NAME)
cancelledTask(FILE_NAME)

except COMPSsException:
print("COMPSsException caught")

write_two(file_name)

L L

E

T

C C



Validation Example

• Protein Mutants workflow from BioBB workflows 

• Three types of failures
• incorrect data, 
• incorrect SW configuration, 
• longer execution time

• On_failure = CANCEL_SUCCESSORS

COMPSs managing 
failures

Application managing 
failures

Successor tasks are 
cancelled 



Checkpointing
• Allows the workflow re-execution avoiding the re-execution of finished tasks

• Asynchronous but with some overhead
• Save tasks results in a persistent storage
• Trade-off between performance and time to recover
• Establishing the right checkpoint granularity is important

• 3 mechanisms for automatic checkpointing
• Time:  periodically, COMPSs saves the last version produced for every value
• Finished tasks : after the completion of X tasks, COMPSs saves the last version 

produced for every value
• Instantiation task groups: Defines groups of tasks, COMPSs saves those data versions 

that are final results for the group

• Indicated by the developer with API
• No checkpoint inside the task: Drawback for very large tasks.

• Possible integration with internal checkpointing

compss_snapshot()



Checkpointing Overhead

• Benchmarks:
• K-means clustering 
• PMXCV19, bio workflow that evaluates changes in the binding affinity between SARS-Cov-2 spike protein and 

Human ACE2 receptor.
• Principle Component Analysis (PCA)

• Policies:
• Instantiated Tasks Groups - ITG (Grouping every 10 instantiated tasks)
• Finished Tasks – FT (Every 10 finished tasks)
• Periodic Time - PT (15 seconds interval)



Checkpointing Overhead

• Importance on the policy and frequency choices depending on the application

• Policies:
• Instantiated Tasks Groups - ITG (Grouping every 10, 50, 100 instantiated tasks)
• Periodic Time - PT (15, 30, 60 seconds interval)
• Finished Tasks – FT (Every 10, 40, 100 finished tasks)



DA-driven ensemble member pruning

Hecuba support for a lambda 
architecture, allowing both batch 
processing and stream processing

Earth-System Model (ESM) workflow 

Task-groups and exceptions used 
to dynamically prune ensemble 
members based on data analytics  



Event-driven cancellation/creation 

• Evaluation of scenarios after the occurrence of 
a seismic event 
• Combines multiple web services and HPC 

simulation (Salvus) 
• Workflow Dynamicity: 

• Usage of data streaming for communication of 
events 

• On event occurrence API supports:
• Dynamic cancellation of task groups
• Dynamic creation of new set of tasks 

UCIS4EQ: HPC-based urgent seismic simulation workflow
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CAELESTIS Simulation Ecosystem Architecture
Towards a digital twin for aircraft design

Storage Service

Edge device

HPC Site CAELESTIS Repositories 

Workflow templates
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DFS
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Computing Cluster

HPC Simulation Service 

Job scheduler 

COMPSs

REST API / Web UI (https)
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Development

YAML 



Workflow templates
Surrogate Model Creation Workflow
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Grid-search model selection

Specific workflow instance
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Checkpoint management

• CAELESTIS service offers two management 
options of checkpointed jobs: 
• Automatic handling: If job terminates due to time 

constraint, the service reinitiates the workflow 
submission, which is rerun from the checkpoint. 
This process can continue until the job concludes 
successfully.

• Manual handling: users have the option to 
handle checkpoints manually. If a job ends due 
to a time constraint, it will appear in the 
execution dashboard under the ”timeout jobs” 
list. Users can then initiate a new job from the 
checkpoint.



Final thoughts

• Coarse-grained task-based programming models provide suitable environments for developing HPC + 
AI workflows 
• eFlows4HPC 
• CAELESTIS 
• DT-GEO

• These programming environments should provide means to guarantee resiliance in the workflows’ 
executions

• Fault tolerance and exceptions mechanisms can be used to provide maleability and dynamicity to the 
workflow applications 

• Checkpointing provides resiliance, but also mechanisms to avoid job execution constraints 



Further Information

• Project page:  http://www.bsc.es/compss
• Documentation
• Virtual Appliance for testing & sample applications
• Tutorials

• Source Code
https://github.com/bsc-wdc/compss

• Docker Image
https://hub.docker.com/r/compss/compss

• Applications
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

• Dislib
• https://dislib.readthedocs.io/en/latest/

http://www.bsc.es/compss
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib
https://dislib.readthedocs.io/en/latest/
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