

Simplifying the life-
cycle management of
complex application
workflows
Rosa M Badia

12/6/2024 AEiC 2024 workshop, Barcelona

EuroHPC systems
Status Country Peak performance Architecture

LUMI Operational Finland 539.13 petaflops 64-core AMD EPYC™ CPUs +
AMD Instinct™ GPU

Leonardo Operational Italy 315.74 petaflops Intel Ice-Lake, Intel Sapphire
Rapids + NVIDIA Ampere

MareNostrum 5 Operational Spain 295.81 petaflops Intel Sapphire Rapids, NVIDIA
Hopper, NVIDIA Grace, Intel
Emeralds, Intel Rialto

Meluxina Operational Luxembour
g

18.29 petaflops AMD EPYC + NVIDIA Ampere
A100

Vega Operational Slovenia 10.05 petaflops AMD Epyc 7H12 + Nvidia A100

Karolina Operational Czech Republic 12.91 petaflops AMD + Nvidia A100

Discoverer Operational Bulgaria 5.94 petaflops AMD EPYC

Deucalion Operational Portugal 5.01 petaflops A64FX, AMD EPYC, Nvidia
Ampere

https://eurohpc-ju.europa.eu/about/our-supercomputers_en

JUPITER, First European Exascale

Supercomputer announced to be installed

in Jülich

Pr
e-

Ex
as

ca
le

Pe
ta

sc
al

e

eFlows4HPC in a nutshell

• Software tools stack that makes easier the development
and management of complex workflows:
• Combine different aspects

• HPC, AI, data analytics
• Reactive and dynamic workflows

• Autonomous workflow steering
• Full lifecycle management

• Not just execution
• Data logistics and Deployment

• HPC Workflows as a Service:
• Mechanisms to make easier the

use and reuse of HPC by wider
communities

• Architectural Optimizations:
• Selected HPC – AI Kernels Optimized for GPUs, FPGA, EPI

• Validation Pillar’s
• End-user workflows linked to CoEs

Dynamic Workflow Description

TOSCA Description

eFlows4HPC Gateway Services

Workflow
Registry

Alien4CloudSoftware
Catalog

3. Deploy

Data
Catalog

PyCOMPSs
Code

Data Logistics
Pipelines

Endpoint to invoke
the Workflow

1. Create
Workflow

4. share

Workflow development overview

2. Store

Computational Workflow as a simple Python script.
Invocation of software described in the Software Catalog

Description of data movements as Python functions.
Input/output datasets described at Data Catalog

Topology of the components involved in the workflow
lifecycle and their relationship.

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):
for k in range(MSIZE):

multiply (A[i][k], B[k][j], C[i][j])
compss_barrier()
mulTime = time.time() - startMulTime

Programming with PyCOMPSs/COMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Builds a task graph at runtime that

express potential concurrency
• Tasks can be complex, parallel, even MPI
• Offers a shared memory illusion to

applications in a distributed system
• The application can address larger data

storage space: support for Big Data apps
• Agnostic of computing platform
• Provenance recording
• Syntax extended to better integrate

AI and HPDA

PyCOMPSs features and runtime

• PyCOMPSs/COMPSs applications executed in distributed mode following the master-
worker paradigm
• Description of computational infrastructure in an XML file

• Sequential execution starts in master node and tasks are offloaded to worker nodes
• All data scheduling decisions and data transfers are performed by the runtime
• All data scheduling decisions

and data transfers are
performed by the runtime
• Support for elasticity

Heterogeneous Tasks
• A task can be more than a sequential function

• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically (@binary)
• Supports for alternative programming models: MPI (@mpi)

• Can be combined with other decorators
• @constraint: To indicate amount of memory, number of processors or GPUs per binary

or MPI process
• @container: When software is distributed as a container

@container(engine=‘SINGULARITY’, image=“/path/to/app.sif”)
@binary(binary=“app.bin” args=“—in {{f_in}} –out {{f_out}})
@task(f_in=FILE_IN, f_out=FILE_OUT)
def app_task(f_in, f_out):
 pass

@binary(binary=“app.bin” args=“—in {{f_in}} –out {{f_out}})
@task(f_in=FILE_IN, f_out=FILE_OUT)
def app_task(f_in, f_out):
 pass

@constraint(processors=[{'processorType':'CPU','computingUnits':'1’},
{'processorType':'GPU', 'computingUnits':'1'}])

@task(returns=1)
def func(a, b, c):

...
return result

@constraint (computingUnits= ”8")
@mpi (runner="mpirun", processes= ”16”, ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...)
def nems(stdOutFile, stdErrFile):

pass

Failure management

• Interface than enables the programmer to give hints about failure management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE

• Implications on file management:
• i.e, on IGNORE, output files are generated empty

• Possibility of ignoring part of the execution of the workflow, for example if a task fails in an unstable
device

• Opens the possibility of dynamic workflow behaviour depending on the actual outcome of the tasks

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS’,
time_out=‘$task_timeout’)
def task(file_path):

...
if cond :

raise Exception()

Timeouts and exceptions

• Timeouts can be defined for a task

• Tasks can raise exceptions

• Combined with groups of tasks enables to cancel the
group of tasks on the occurrence of an exception

@task(file_path=FILE_IN, time_out=200)
def time_out_task (file_path):

...

@task(file_path=FILE_INOUT)
def comp_task(file_path):

...
raise COMPSsException("Exception

raised")

def test_cancellation(file_name):
try:

with TaskGroup('failedGroup’):
long_task(file_name)
long_task(file_name)
executed_task(file_name)
comp_task(file_name)
cancelledTask(FILE_NAME)
cancelledTask(FILE_NAME)

except COMPSsException:
print("COMPSsException caught")

write_two(file_name)

L L

E

T

C C

Validation Example

• Protein Mutants workflow from BioBB workflows

• Three types of failures
• incorrect data,
• incorrect SW configuration,
• longer execution time

• On_failure = CANCEL_SUCCESSORS

COMPSs managing
failures

Application managing
failures

Successor tasks are
cancelled

Checkpointing
• Allows the workflow re-execution avoiding the re-execution of finished tasks

• Asynchronous but with some overhead
• Save tasks results in a persistent storage
• Trade-off between performance and time to recover
• Establishing the right checkpoint granularity is important

• 3 mechanisms for automatic checkpointing
• Time: periodically, COMPSs saves the last version produced for every value
• Finished tasks : after the completion of X tasks, COMPSs saves the last version

produced for every value
• Instantiation task groups: Defines groups of tasks, COMPSs saves those data versions

that are final results for the group

• Indicated by the developer with API
• No checkpoint inside the task: Drawback for very large tasks.

• Possible integration with internal checkpointing

compss_snapshot()

Checkpointing Overhead

• Benchmarks:
• K-means clustering
• PMXCV19, bio workflow that evaluates changes in the binding affinity between SARS-Cov-2 spike protein and

Human ACE2 receptor.
• Principle Component Analysis (PCA)

• Policies:
• Instantiated Tasks Groups - ITG (Grouping every 10 instantiated tasks)
• Finished Tasks – FT (Every 10 finished tasks)
• Periodic Time - PT (15 seconds interval)

Checkpointing Overhead

• Importance on the policy and frequency choices depending on the application

• Policies:
• Instantiated Tasks Groups - ITG (Grouping every 10, 50, 100 instantiated tasks)
• Periodic Time - PT (15, 30, 60 seconds interval)
• Finished Tasks – FT (Every 10, 40, 100 finished tasks)

DA-driven ensemble member pruning

Hecuba support for a lambda
architecture, allowing both batch
processing and stream processing

Earth-System Model (ESM) workflow

Task-groups and exceptions used
to dynamically prune ensemble
members based on data analytics

Event-driven cancellation/creation

• Evaluation of scenarios after the occurrence of
a seismic event
• Combines multiple web services and HPC

simulation (Salvus)
• Workflow Dynamicity:

• Usage of data streaming for communication of
events

• On event occurrence API supports:
• Dynamic cancellation of task groups
• Dynamic creation of new set of tasks

UCIS4EQ: HPC-based urgent seismic simulation workflow

CMT_1

…GMM

Pre
process

Update
scenarios

Generate
scenarios

Post
process

Process
updates

Map
Update

CMT_N+1

GMM

Pre
process

Post
process

Map
Update

CMT_1

GMM

Pre
process

Post
process

Map
Update

CMT_N

GMM

Pre
process

Post
process

Map
Update

…

✘
✘
✘
✘

Merge

Stream

Stream

CAELESTIS Simulation Ecosystem Architecture
Towards a digital twin for aircraft design

Storage Service

Edge device

HPC Site CAELESTIS Repositories

Workflow templates

Software

DFS

Data Operators
Login Nodes

Computing Cluster

HPC Simulation Service

Job scheduler

COMPSs

REST API / Web UI (https)

HPC Workflow
Instantiation

HPC Data Staging

Deployment

Submission

HPC Workflow
Configuration

HPC workflow
inputs/results

HPC Workflow
Development

YAML

Workflow templates
Surrogate Model Creation Workflow

Simulation

Model

K-Fold- CV
training/
validation

dataset split

.

.

.

Generate
Inputs set

Model
Creation

Definition
- variables,
accuracy

Prepare
Input

Feature
Extraction

training K-Fold CV
evaluation

Customized for each the model

.

.

.

.

.

.

SimulationPrepare
Input

Feature
Extraction

Grid-search model selection

Specific workflow instance
Mechanical Simulation Alya

PyDoE

Gmesh
Config

Alya
Parser

Alya
ConfigGmesh

AlyaGmesh
Config

Alya
Parser

Alya
ConfigGmesh

.

.

.

K-Fold- CV (training/
validation ds Split)

SK-learn/
Dislib (fit)

K-Fold- CV
(Evaluation)

SK-learn/
Dislib

(predict)
Surrogate

Model

Alya
Gmesh
Config

Alya
Parser

Alya
Config

Gmesh

.

.

.
K-Fold- CV (training/
validation ds Split)

SK-learn/
Dislib (fit)

K-Fold- CV
(Evaluation)

SK-learn/
Dislib

(predict)

Selection

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

Checkpoint management

• CAELESTIS service offers two management
options of checkpointed jobs:
• Automatic handling: If job terminates due to time

constraint, the service reinitiates the workflow
submission, which is rerun from the checkpoint.
This process can continue until the job concludes
successfully.

• Manual handling: users have the option to
handle checkpoints manually. If a job ends due
to a time constraint, it will appear in the
execution dashboard under the ”timeout jobs”
list. Users can then initiate a new job from the
checkpoint.

Final thoughts

• Coarse-grained task-based programming models provide suitable environments for developing HPC +
AI workflows
• eFlows4HPC
• CAELESTIS
• DT-GEO

• These programming environments should provide means to guarantee resiliance in the workflows’
executions

• Fault tolerance and exceptions mechanisms can be used to provide maleability and dynamicity to the
workflow applications

• Checkpointing provides resiliance, but also mechanisms to avoid job execution constraints

Further Information

• Project page: http://www.bsc.es/compss
• Documentation
• Virtual Appliance for testing & sample applications
• Tutorials

• Source Code
https://github.com/bsc-wdc/compss

• Docker Image
https://hub.docker.com/r/compss/compss

• Applications
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

• Dislib
• https://dislib.readthedocs.io/en/latest/

http://www.bsc.es/compss
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib
https://dislib.readthedocs.io/en/latest/

ACKs

CAELESTIS

HP2C-DT

MareNostrum 5

rosa.m.badia@bsc.es

Thanks!

rosa.m.badia@bsc.es

