
SweetAda: a Multi-architecture

Embedded Development

Framework
A showcase of the power of Ada, anywhere you may dream

Gabriele Galeotti & Fernando Oleo Blanco

https://www.sweetada.org/
https://irvise.xyz/
https://github.com/gabriele-galeotti/SweetAda

Objectives

Present SweetAda

What it is

What it supports

How to work with it

Showcase SweetAda

SweetAda on an FPGA

SweetAda on…

SweetAda brings a lot to the table, we will showcase the following topics

Why SweetAda?
It started from a firmware for a small M68k embedded board…

Why SweetAda?
It started from a firmware for a small M68k embedded board…

An idea… run Ada everywhere, when the CPU starts

Why SweetAda?
It started from a firmware for a small M68k embedded board…

An idea… run Ada everywhere, when the CPU starts

Why SweetAda?
It started from a firmware for a small M68k embedded board…

An idea… run Ada everywhere, when the CPU starts

Issues started to appear

Toolchain?

RTS (Run Time System)?

Build system/framework?

Why SweetAda?
It started from a firmware for a small M68k embedded board…

An idea… run Ada everywhere, when the CPU starts

Issues started to appear

Toolchain?

RTS (Run Time System)?

Build system/framework?

Goal

It should be capable of running even on an S/390 mainframe! Emulated at least

Soooo… Did SweetAda deliver?

Currently supported architectures

~$ ls SweetAda/cpus

AArch64 ARM AVR M68k MicroBlaze MIPS NiosII OpenRISC PowerPC RISC-V SPARC SuperH System390 x86 x86-64

Oh yes, it does deliver

Soooo… Did SweetAda deliver?

Currently supported architectures

~$ ls SweetAda/cpus

AArch64 ARM AVR M68k MicroBlaze MIPS NiosII OpenRISC PowerPC RISC-V SPARC SuperH System390 x86 x86-64

Currently supported targets

~$ ls SweetAda/platforms

Altera10M50GHRD Dreamcast MemecFX12 PC-x86 QEMU-R2D-PLUS Spartan3A-EK

Amiga-FS-UAE FRDM-KL46Z ML605 PC-x86-64 QEMU-RISC-V Spartan3E-SK

Android GEMI MPC8306-SOM PK-S5D9 QEMU-STM32VLDISCOVERY STM32F769I

ArduinoUNO HiFive1 MPC8306-Switch QEMU-AArch64 Quadra800 System390

Atlas IntegratorCP MPC8315e QEMU-AVR RaspberryPi3 Template

DE10-Lite LEON3 MSP432P401R QEMU-MIPS REF405EP VMIPS

DECstation5000.133 M5235BCC MVME162-510A QEMU-OpenRISC SBC5206 XilinxZynqA9

DigiConnectME Malta NEORV32 QEMU-PPC64 SPARCstation5 ZOOM

Some even have subplatforms (different implementations)

~$ ls SweetAda/platforms/NEORV32

platform-DE10-Lite platform-GHDL platform-ULX3S-Litex

Oh yes, it does deliver

A few extra goodies

Build your own toolchain

~$ ls SweetAda/toolchains

Binutils.sh GCC.sh GDB.sh GNATTOOLS.sh linux-python-config.sh MANUAL.txt

Scripts to build GCC/GNAT for all of these targets, though it is not fully automated

A few extra goodies

Build your own toolchain

~$ ls SweetAda/toolchains

Binutils.sh GCC.sh GDB.sh GNATTOOLS.sh linux-python-config.sh MANUAL.txt

Scripts to build GCC/GNAT for all of these targets, though it is not fully automated

It’s own small C-lib

~$ ls SweetAda/clibrary

ada_interface.h clibrary.gpr ctype.c c_wrappers.ads gnat.adc stdio.h string.c strings.h

assert.c clibrary.h ctype.h errno.c Makefile stdlib.c string.h

assert.h configuration.in c_wrappers.adb errno.h stdio.c stdlib.h strings.c

A few extra goodies

Build your own toolchain

~$ ls SweetAda/toolchains

Binutils.sh GCC.sh GDB.sh GNATTOOLS.sh linux-python-config.sh MANUAL.txt

Scripts to build GCC/GNAT for all of these targets, though it is not fully automated

It’s own small C-lib

~$ ls SweetAda/clibrary

ada_interface.h clibrary.gpr ctype.c c_wrappers.ads gnat.adc stdio.h string.c strings.h

assert.c clibrary.h ctype.h errno.c Makefile stdlib.c string.h

assert.h configuration.in c_wrappers.adb errno.h stdio.c stdlib.h strings.c

A few drivers…

~$ ls SweetAda/drivers

am7990.adb etherlinkiii.ads ide.ads pc.adb piix.adb uart16x50.adb xps.ads

am7990.ads ethernet.adb Makefile pc.ads piix.ads uart16x50.ads z8530.adb

blockdevices.adb ethernet.ads mc146818a.adb pci.adb pl011.adb upd4991a.adb z8530.ads

blockdevices.ads goldfish.adb mc146818a.ads pci.ads pl011.ads upd4991a.ads

configuration.in goldfish.ads ne2000.adb pcican.adb pl110.adb vga.adb

etherlinkiii.adb ide.adb ne2000.ads pcican.ads pl110.ads vga.ads

SweetAda’s technical stack

GCC/GNAT compiler, the driving force

Needs no introduction nor explanation. GCC with all the architectures it supports, is the central pillar

How to make all this possible

SweetAda’s technical stack

GCC/GNAT compiler, the driving force

Needs no introduction nor explanation. GCC with all the architectures it supports, is the central pillar

Good old make

Used as the skeleton for the build. It selects targets, runtimes, toolchains, flags, autogenerates/processes files,

prints diagnostics…

How to make all this possible

SweetAda’s technical stack

GCC/GNAT compiler, the driving force

Needs no introduction nor explanation. GCC with all the architectures it supports, is the central pillar

Good old make

Used as the skeleton for the build. It selects targets, runtimes, toolchains, flags, autogenerates/processes files,

prints diagnostics…

GPRBuild, the Ada heavyweight builder

Runs the build for the final binary/kernel

How to make all this possible

SweetAda’s technical stack

GCC/GNAT compiler, the driving force

Needs no introduction nor explanation. GCC with all the architectures it supports, is the central pillar

Good old make

Used as the skeleton for the build. It selects targets, runtimes, toolchains, flags, autogenerates/processes files,

prints diagnostics…

GPRBuild, the Ada heavyweight builder

Runs the build for the final binary/kernel

And some configuration files

Each platform works a bit differently. A config file is present to help with the build config, post-build and

upload. Python, shell and some legacy TCL is also used

How to make all this possible

A tipical workflow, step by step, using SweetAda I

SweetAda setup

A tipical workflow, step by step, using SweetAda I

SweetAda setup

First things first, get SweetAda & find help

git clone https://github.com/gabriele-galeotti/SweetAda && cd SweetAda

make help

A tipical workflow, step by step, using SweetAda I

SweetAda setup

First things first, get SweetAda & find help

git clone https://github.com/gabriele-galeotti/SweetAda && cd SweetAda

make help

Get a toolchain

Either provide one / your own (SweetAda is that flexible)

Or build one using script found in ~$ ls SweetAda/toolchains

A tipical workflow, step by step, using SweetAda I

SweetAda setup

First things first, get SweetAda & find help

git clone https://github.com/gabriele-galeotti/SweetAda && cd SweetAda

make help

Get a toolchain

Either provide one / your own (SweetAda is that flexible)

Or build one using script found in ~$ ls SweetAda/toolchains

You are ready to rock and roll

A tipical workflow, step by step, using SweetAda II

CPU & Board setup

A tipical workflow, step by step, using SweetAda II

CPU & Board setup
Build the RTS (Run Time System)

SweetAda supports both the zfp (zero-footprint profile) & sfp (small-footprint)

make CPU=RISC-V RTS=sfp rts # Or RTS=zfp

make CPU=RISC-V RTS=sfp TOOLCHAIN_NAME=riscv64-elf rts

A tipical workflow, step by step, using SweetAda II

CPU & Board setup
Build the RTS (Run Time System)

SweetAda supports both the zfp (zero-footprint profile) & sfp (small-footprint)

make CPU=RISC-V RTS=sfp rts # Or RTS=zfp

make CPU=RISC-V RTS=sfp TOOLCHAIN_NAME=riscv64-elf rts

Select a board and files for the build process

This will select the boards specific files and configuration for the build

make PLATFORM=NEORV32 SUBPLATFORM=ULX3S-Litex createkernelcfg

A tipical workflow, step by step, using SweetAda II

CPU & Board setup
Build the RTS (Run Time System)

SweetAda supports both the zfp (zero-footprint profile) & sfp (small-footprint)

make CPU=RISC-V RTS=sfp rts # Or RTS=zfp

make CPU=RISC-V RTS=sfp TOOLCHAIN_NAME=riscv64-elf rts

Select a board and files for the build process

This will select the boards specific files and configuration for the build

make PLATFORM=NEORV32 SUBPLATFORM=ULX3S-Litex createkernelcfg

Configuration of the build (flags, post-process steps, application to be built…)

make TOOLCHAIN_NAME=riscv64-elf PLATFORM=NEORV32 SUBPLATFORM=ULX3S-Litex configure

A tipical workflow, step by step, using SweetAda III

Modify the default configuration as you see fit

[...]

TOOLCHAIN PREFIX: /opt/toolchains

TOOLCHAIN NAME: riscv64-elf

[...]

GCC MULTIDIR: rv32im/ilp32

RTS: sfp

GNAT.ADC PROFILE: sfp

ADA MODE: ADA22

[...]

USE LIBADA: Y

USE CLIBRARY:

OPTIMIZATION LEVEL: 2

ADA GCC SWITCHES (RTS): -mcmodel=medany

C GCC SWITCHES (RTS): -mcmodel=medany

GCC SWITCHES (PLATFORM): -march=rv32i2p0_mc -mabi=ilp32

LOWLEVEL FILES: startup.S llkernel.S

GCC SWITCHES (LOWLEVEL):

LD SCRIPT: linker.lds

LD SWITCHES: -m elf32lriscv --defsym _riscv_mtime_mmap=0xFFFFF400 --defsym _riscv_mtimecmp_mmap=0xFFFFF408

OBJCOPY SWITCHES:

OBJDUMP SWITCHES:

A tipical workflow, step by step, using SweetAda IIII

A tipical workflow, step by step, using SweetAda IIII

Build the kernel, application into a binary

GPRBuild takes over the build

make all # or make kernel

make postbuild # run helper steps if needed to get the binary ready

A tipical workflow, step by step, using SweetAda IIII

Build the kernel, application into a binary

GPRBuild takes over the build

make all # or make kernel

make postbuild # run helper steps if needed to get the binary ready

Run the application

Each target has its own way of running SweetAda (launch emulator, upload via serial, JTAG…)

make run

or

make session-start # make session-end

A tipical workflow, step by step, using SweetAda IIII

Build the kernel, application into a binary

GPRBuild takes over the build

make all # or make kernel

make postbuild # run helper steps if needed to get the binary ready

Run the application

Each target has its own way of running SweetAda (launch emulator, upload via serial, JTAG…)

make run

or

make session-start # make session-end

Enjoy!

DEMOnstration time

ULX3S FPGA, NEORV32 softcore, Litex build

RISC-V 32-bit IMC core, 50 MHz, Timer, UART, Leds

FRDM-KL46Z ARM board

LEDS, GDB-debugging session

PC-X86, QEMU-ROM

VGA, TCP-IP stack

SweetAda running on…

https://ulx3s.github.io/
https://neorv32.org/
https://github.com/enjoy-digital/litex

SweetAda’s strengths
SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

🚄 Fast & easy work - prepare, build and upload applications with just a few commands!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

🚄 Fast & easy work - prepare, build and upload applications with just a few commands!

🌕 Full support - supports and builds several runtimes, with exceptions, interrupts, and much more!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

🚄 Fast & easy work - prepare, build and upload applications with just a few commands!

🌕 Full support - supports and builds several runtimes, with exceptions, interrupts, and much more!

🚀 Open development - has had tremendous growth and contributions are more than welcome!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

🚄 Fast & easy work - prepare, build and upload applications with just a few commands!

🌕 Full support - supports and builds several runtimes, with exceptions, interrupts, and much more!

🚀 Open development - has had tremendous growth and contributions are more than welcome!

📖 MIT licensed - hack, develop, integrate it however you like thanks to its liberal license!

SweetAda offers a lot to the Ada (and wider) programming community

SweetAda’s strengths

📤 Portability - run Ada code on a large number of architectures, boards and emulators!

🧑‍💻 Developer friendly & Hackable - show expand, tweak, improve and automate things as your needs

evolve!

🚄 Fast & easy work - prepare, build and upload applications with just a few commands!

🌕 Full support - supports and builds several runtimes, with exceptions, interrupts, and much more!

🚀 Open development - has had tremendous growth and contributions are more than welcome!

📖 MIT licensed - hack, develop, integrate it however you like thanks to its liberal license!

Future work?

Improve the RTS, more drivers, quality-of-life improvements, documentation, board support…

SweetAda offers a lot to the Ada (and wider) programming community

Thank you very much!

Gabriele Galeotti & Fernando Oleo Blanco

gabriele.galeotti@sweetada.org

https://www.sweetada.org/
https://irvise.xyz/
mailto:gabriele.galeotti@sweetada.org

