ADA Volume 39
USER Number 3
JOU RNAL September 2018

Contents

Page

Editorial Policy for Ada User Journal 138
Editorial 139
Quarterly News Digest 140
Conference Calendar 159
Forthcoming Events 165
Special Contribution

J. Cousins

“ARG Work in Progress 11 169
Ada-Europe 2018 Industrial Presentations

M. Martignano

*““C Guidelines Compliance and Deviations (the MISRA and CERT Cases)” 175

A. Marriot and U. Maurer

“Using Ada in Non-Ada Systems™ 180
Ada-Europe 2018 Technical Presentations

A. R. Mosteo

“Alire: a Library Repository Manager for the Open Source Ada Ecosystem” 189

B. S. Fagin and M. C. Carlisle

“The IRONSIDES Project: Final Report™ 197
Articles

B. I. Sandén

“Designing Multitask Control Software in a Multiprocessor World™ 203
Ada-Europe Associate Members (National Ada Organizations) 208
Ada-Europe Sponsors Inside Back Cover

Ada User Journal Volume 39, Number 3, September 2018

138

Editorial Policy for Ada User Journal

Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

e Refereed original articles on
technical matters concerning Ada
and related topics.

e Invited papers on Ada and the Ada
standardization process.

e Proceedings of workshops and
panels on topics relevant to the

Journal.

e Reprints of articles published
elsewhere that deserve a wider
audience.

e News and miscellany of interest to
the Ada community.

e Commentaries on matters relating
to Ada and software engineering.

e Announcements and reports of
conferences and workshops.

e Announcements regarding
standards concerning Ada.

e Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length -
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

Volume 39, Number 3, September 2018

Ada User Journal

140

Quarterly News Digest

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 140
Ada-related Resources 142
Ada-related Tools 143
Ada-related Products 145
Ada and Operating Systems 146
References to Publications 148
Ada Inside 150
Ada in Context 150

Ada-related Events

[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Belgium Spring Event

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 27 May 2018 18:03:03 -0000

Subject: Ada-Belgium Spring 2018 Event,
Sun 10 June 2018

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, be.comp.programming

Ada-Belgium Spring 2018 Event
Sunday, June 10, 2018, 12:00-19:00
Leuven, Belgium
including at 15:00
2018 Ada-Belgium General Assembly
and at 16:00
Ada Round-Table Discussion

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/local.html

Announcement

The next Ada-Belgium event will take
place on Sunday, June 10, 2018 in
Leuven.

For the 11th year in a row, Ada-Belgium
organizes their "Spring Event", which
starts at noon, runs until 7pm, and
includes an informal lunch, the 25th(!)
General Assembly of the organization,
and a round-table discussion on Ada-
related topics the participants would like
to bring up.

Schedule

- 12:00 welcome and getting started
(please be there!)

- 12:15 informal lunch
- 15:00 Ada-Belgium General Assembly

- 16:00 Ada round-table + informal
discussions

-19:00 end

Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.

For practical reasons registration is
required. If you would like to attend,
please send an email before Wednesday,
June 6, 21:00, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2018
Event", so you can get precise directions
to the place of the meeting. Even if you
already responded to the preliminary
announcement, please reconfirm your
participation ASAP.

If you are interested to join Ada-Belgium,
please register by filling out the 2018
membership application form[1] and by
paying the appropriate fee before the
General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2018 with all
member benefits[2]. Early enrolment
ensures you receive the full Ada-Belgium
membership benefits (including the Ada-
Europe indirect membership benefits
package).

As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events, as well as
some back issues of the Ada User
Journal[3]. These will be available on a
first-come first-serve basis at the General
Assembly for current and new members.
(Please indicate in the above-mentioned
registration e-mail that you're interested,
S0 we can bring enough copies.)

[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form18.html

[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.ntml

[3] http://www.ada-europe.org/auj/home/

Informal lunch

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at

the lunch are also welcome: they can
choose to join the organization or pay the
sum of 15 Euros per person to the
Treasurer of the organization.

General Assembl

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation[5] for all details.

[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/board/

[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/18/
180610-abga-conv.html

Ada Round-Table Discussion

As in recent years, we plan to keep the
technical part of the Spring event informal
as well. We will have a round-table
discussion on Ada-related topics the
participants would like to bring up. We
invite everyone to briefly mention how
they are using Ada in their work or non-
work environment, and/or what kind of
Ada-related activities they would like to
embark on. We hope this might spark
some concrete ideas for new activities and
collaborations.

Directions

To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of
participants we can accommodate is not
unlimited, so don't delay...

Looking forward to meet many of you!

Ada-Europe 2018 in Lisbon

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 12 Jun 2018 05:43:47 -0000

Subject: Press Release - Reliable Software
Technologies, Ada-Europe 2018

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

FINAL Call for Participation
*** UPDATED Program Summary ***

23rd International Conference on
Reliable Software Technologies
- Ada-Europe 2018

18-22 June 2018, Lishon, Portugal

Volume 39, Number 3, September 2018

Ada User Journal

Ada-related Events

http://www.ada-europe.org/
conference2018

** Check out tutorials and workshops! **

** Full Program available on conference
web site **

*Online proceedings available at event *
*** Register now! ***

Press release:

23rd Ada-Europe Conference on Reliable
Software Technologies

International experts meet in Lisbon

Lisbon, Portugal (12 June 2018) - The
University Lisboa and Ada-Europe
organize from 18 to 22 June 2018 the
"23rd International Conference on
Reliable Software Technologies - Ada-
Europe 2018" in Lisbon, Portugal. The
event is organized in cooperation with the
Ada Resource Association (ARA), and
with ACM's Special Interest Groups on
Ada (SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

This year's conference offers two days of
parallel tutorials and workshops, three
keynotes, a full technical program of
refereed papers and industrial
presentations, an industrial exhibition and
vendor presentations, and a social
program.

Eight excellent tutorials on Monday and
Friday cover a broad range of topics:
Recent Developments in SPARK 2014;
Scheduling analysis of AADL
architecture models; Access types and
memory management in Ada 2012;
Numerics for the Non-Numerical Analyst;
Writing Contracts in Ada; Introduction to
Libadalang; Unit-testing with Ahven;
Frama-C, a Framework for Analysing C
Code.

In addition, on Monday the conference
hosts the new workshop on "Runtime
Verification and Monitoring Technologies
for Embedded Systems" (RUME 2018),
and on Friday for the 5th consecutive year
the workshop on "Challenges and new
Approaches for Dependable and Cyber-
Physical Systems Engineering" (DeCPS
2018).

Three eminent keynote speakers have
been invited to open each day of the core
conference program. Paulo Esteves-
Verissimo (University of Luxembourg,

Luxembourg), on "Security and
Dependability Challenges of Information
Technology (IT) and Operational
Technology (OT) Integration™. Carl
Brandon (Vermont Technical College,
USA), on "From Physicist to Rocket
Scientist, and how to make a CubeSat that
works". Erhard Plédereder (University of
Stuttgart, Germany), on "Vulnerabilities
in Safety, Security, and Privacy".

The technical program presents 10
refereed and carefully selected technical
papers and 4 presentations on the latest
research, new tools, applications and
industrial practice and experience, a
collection of 12 industrial presentations
reflecting current practice and challenges,
and vendor presentations. Springer Verlag
publishes all peer-reviewed papers in the
proceedings of the conference, as LNCS
Vol. 10873. The remainder of the
proceedings will be published in the Ada
User Journal, the quarterly magazine of
Ada-Europe.

The industrial exhibition opens Tuesday
morning in the networking area and runs
until the end of Thursday afternoon.
Exhibitors include AdaCore, PTC
Developer Tools, Rapita Systems, and
Ada-Europe.

The social program includes on Tuesday
evening a Welcome Reception on board
of modern catamaran, to see Lishon from
a different perspective and watch the
sunset from the Tagus river. On
Wednesday evening will be the traditional
Ada-Europe Conference Banquet, held at
the restaurant "A Casa do Bacalhau",
which means "The House of the Codfish",
located in the old stables of the Duke of
Lafes palace. Each day, coffee breaks in
the exhibition area and sit-down lunches
offer ample time for interaction and
networking.

The Best Paper Award will be presented
during the Conference Banquet, the Best
Presentation Award during the Closing
session.

The conference is hosted by Univ. Lisboa
at the VIP Executive Art's Hotel,
strategically located in the Parque das
Nac0es area, Lisbon's modern business
centre, close to the Tagus river and the
Vasco da Gama bridge, and can easily be
accessed by metro.

The full program is available on the
conference web site.

Online registration is still possible.

Latest updates:

The 16-page "Final Program" is available
at <http://www.ada-europe.org/
conference2018/AdaEurope2018%20
Final%20Program.pdf>

Check out the 8 tutorials in the PDF
program, or in the schedule at
<http://www.ada-europe.org/
conference2018/tutorials.html>.

141

Registration fees are very reasonable and
the registration process is done on-line.
Don't delay! For all details, select
"Registration" at <http://www.ada-
europe.org/conference2018> or go
directly to <http://ae2018.di.fc.ul.pt/
registration.html>.

The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 10873, are already available
online. See
<https://link.springer.com/book/10.1007/
978-3-319-92432-8>. A printed copy is
included in every full conference
registration.

Help promote the conference by
advertising for it! <http://www.ada-
europe.org/conference2018/promotion.ht
ml>. Put up the poster at
<http://www.ada-europe.org/
conference2018/picts/
AE2018_poster.png>.

Recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2018.

For the latest information consult the
conference web site <http://www.ada-
europe.org/conference2018>.

[See also “Ada-Europe 2018 in Lisbon”,
AUJ 39-2, p. 62. —sparre]

Ada-Europe 2019 in Warsaw

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Fri, 22 Jun 2018 12:05:48 -0000

Subject: Ada-Europe 24th Int'l Conf. on
Reliable Software Technologies

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

As announced this week at the Ada-
Europe 2018 conference in Lisbon: Ada-
Europe 2019 will be in Warsaw, Poland,
in the week of 10-14 June.

Info on http://www.ada-europe.org/
conference2019 will be expanded shortly,
including the Preliminary Call for
Contributions. Start planning!

ACM HILT 2018 in Boston

From: S. Tucker Taft, AdaCore

Date: Fri, 29 Jun 2018 10:25:30 -0700

Subject: CFP: ACM HILT 2018 Workshop
on Languages/Tools for Cyber-
Resilience at SPLASH in Boston, Nov
5&6

Newsgroups: comp.lang.ada

Here is a chance to show how Ada and
SPARK can be used to address cyber-
security challenges:

https://2018.splashcon.org/track/
hilt-2018-papers

HILT 2018: Workshop on Languages and
Tools for Ensuring Cyber-Resilience in
Critical Software-Intensive Systems, as
part of SPLASH 2018, November 5 & 6,
2018, Boston, MA, USA, Sponsored by
ACM SIGAda.

Ada User Journal

Volume 39, Number 3, September 2018

142

The High Integrity Language Technology
(HILT) 2018 Workshop is focused on the
cyber-resilience needs of critical software
systems, where such a system must be
trusted to maintain a continual delivery of
services, as well as ensuring safety in its
operations. Such needs have common
goals and shared strategies, tools, and
techniques, recognizing the multiple
interactions between security and safety.

We encourage papers and extended
abstracts relating to:

- Language features that can be used to
build security and/or safety into
software-intensive systems; Approaches
to apply effectively the emerging
technologies of Al and Machine
Learning in critical software systems;

Mechanisms that can be used to
understand, certify, and manage systems
that are “data driven,” relying on “soft
code,” where control flow and
algorithms are expressed using data
rather than “hard code” expressed
directly in programming languages;

Extending contract-based programming
to specifying security resistance and
resilience properties as well as safety
and/or correctness properties;

Strategies to minimize risk when
applying complex software requirements
to cyber-physical systems;

Modeling and/or programming language
features and analysis techniques that aid
in code analysis and verification and that
increase the level of abstraction and
expressiveness;

Language features that support
continuous requirements maturation to
support evolving needs, particularly in
cyber-physical systems, while ensuring
that security and safety properties are
preserved.

This workshop is designed as a forum for
communities of researchers and
practitioners from academic, industrial,
and governmental settings, to come
together, share experiences, and forge
partnerships focused on integrating and
deploying tool and language combinations
to address the challenges of building
cyber-resilient software-intensive
systems. The workshop will be a
combination of presentations and panel
discussions, with one or more invited
speakers.

Attendees wishing to present at the
workshop should prepare full papers
(approx. 6-8 pages), or extended abstracts
(approx. 2-4 pages) for their proposed
presentations, and the workshop program
committee will select presentations and
organize them into sessions. Other
interested participants are welcome to
register for the HILT 2018 Workshop as
part of their SPLASH 2018 registration.

- Aug 1: Papers or Extended abstracts
due;

- Sep 1: Notification of submissions
accepted for presentation

- Oct 1: Final submissions due

- Nov 5&6: Workshop as part of SPLASH
2018

Please submit papers and extended
abstracts, by Aug 1, 2018, on HotCRP:
https://hilt18.hotcrp.com/

Workshop Co-Chairs

- Bill Bail, MITRE

- Tucker Taft, AdaCore, Inc
Organizing Committee

- Dirk Craeynest, ACM SIGAda
International Representative,
KU Leuven

- Drew Hamilton, Chair, ACM SIGAda,
Mississippi State University, CCI

- Clyde Roby, Secretary-Treasurer, ACM
SIGAda, Institute for Defence Analyses

- Alok Srivastava, Editor, ACM Ada
Letters, Engility Corp.

- Ricky E. Sward, Past Chair, ACM
SIGAda, MITRE

URLs:

- SPLASH 2018:
http://www.splashcon.org

- HILT 2018 Information:
http://sigada.org/conf/hilt2018

- HILT 2018 Submissions:
https://hilt18.hotcrp.com/

- ACM SIGAda: http://sigada.org

Ada-related Resources

The Ada-wide Search
Engine

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 May 2018 19:53:12 -0500

Subject: Re: Ada in polluted WWW searches

Newsgroups: comp.lang.ada

> [problems searching for Ada]

This problem was well known decades
ago. Tom Moran and | built the Ada-wide
search engine to "solve" this problem -- it
indexes all known Ada sites. It doesn't
work as well as it used to because a lot of
sites have switched to HTTPS which we
can't index yet. (I need to find some time
to fix that; | have *soooo* much spare
time ;-).

Anyway, you can find it on AdalC or
directly at <http://www.ada-auth.org/
wide-search.html>.

Note that the blurb for this on the ACAA
home page says "Search many Ada-
related web sites without getting results
for dentists and dairymen."

Ada-related Resources

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 22 May 2018 08:08:52 +0200

Subject: Re: Ada in polluted WWW searches

Newsgroups: comp.lang.ada

>[.]

Is the source for the indexing engine
available? Maybe somebody could be
tempted to submit a patch, adding support
for HTTPS.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 May 2018 16:31:38 -0500

Subject: Re: Ada in polluted WWW searches

Newsgroups: comp.lang.ada

> [...] Is the source for the indexing
engine available? [...]

Unfortunately, it's not. We built it out of
spare parts laying around, and | never
found time to figure out the licensing on
those. Another job for the copious spare
time. :-)

I do plan to work on that project this
summer after the Lisbon ARG meeting
(it's tied into a long-running project to get
the various servers off of Windows, to use
more modern hardware and not cost $$$).

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat Jul 7 2018

Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2 712 members [1]
- Reddit: 1 900 readers [2]
- StackOverflow: 1 000 followers [3]

- Google+: 771 members [4]
- Freenode 87 participants [5]
- Gitter: 57 people [6]
- Twitter: 8 tweeters [7]

[1] https://iwww.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/
guestions/tagged/ada

[4] https://plus.google.com/
communities/102688015980369378804

[5] #Ada on irc.freenode.net
[6] https://gitter.im/ada-lang

[7] https://twitter.com/search?
f=realtime&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
39-2, p. 63. —sparre]

Repositories of Open Source
Software
From: Jacob Sparre Andersen

<jacob@jacob-sparre.dk>
Date: Sat Jul 7 2018

Volume 39, Number 3, September 2018

Ada User Journal

Ada-related Tools

Subject: Repositories of Open Source
software

GitHub: 2_123 repositories [1]
513 developers [2]
2809 issues [3]
Rosetta Code: 645 examples [4]
33 developers [5]
1 issues [6]
Sourceforge: 265 projects [7]
BlackDuck OpenHUB: 206 projects [8]
Bitbucket: 82 repositories [9]
Codelabs: 45 repositories [10]
AdaForge: 8 repositories [11]

[1] https://github.com/search?
g=language%3AAda&type=
Repositories

[2] https://github.com/search?
g=language%3AAda&type=Users

[3] https://github.com/search?
g=language%3AAda&type=Issues

[4] http://rosettacode.org/wiki/
Category:Ada

[5] http://rosettacode.org/wiki/
Category:Ada_User

[6] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[7] http://sourceforge.net/directory/
language%3Aada/

[8] https://www.openhub.net/tags?
names=ada

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

[10] http://git.codelabs.ch/
[11] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 39-2, p. 63. —sparre]

Ada-related Tools
DragonEgg

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Mon, 21 May 2018 21:37:12 -0000

Subject: DragonEgg has been revived

Newsgroups: comp.lang.ada

[I apologise if this has already been
covered in the walls of text which have
been flying around recently, but | have
not seen this mentioned yet.]

I've just discovered that DragonEgg has
been revived for GCC 8.x and LLVM 6.x,
although there is nothing in the
announcement about Ada:

http://lists.llvm.org/pipermail/llvm-
dev/2017-August/116705.html

[See also <https://github.com/xiangzhai/
dragonegg>. —sparre]

State of the Compiler
Market

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Tue, 22 May 2018 12:29:09 -0000

Subject: Re: DragonEgg has been revived

Newsgroups: comp.lang.ada

>1..]

What | would like to see is an Ada
compiler that can generate code for a
wide range of targets without any GPL
restrictions on the generated code.

I'm not really bothered how that happens
but LLVM seems like an interesting
option.

The real question however is will this Ada
compiler still work with the versions of
the toolchains available 2-5 years from
now or will it fall into disuse just like
DragonEgg did ?

There's a confidence problem here. | can
write C and C++ code in 2018 for some
random embedded target knowing there's
a very very good chance | will still be
able to compile that code on the freely
available toolchains which will exist 5
years from now.

I don't currently have that confidence with
the Ada compilers which are available in
2018.

As | have said before, the language is
really good, but the compiler situation
is lousy.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 23 May 2018 08:26:46 +0100

Subject: Re: DragonEgg has been revived

Newsgroups: comp.lang.ada

> What I would like to see is an Ada
compiler that can generate code for a
wide range of targets without any GPL
restrictions on the generated code.

Pretty sure that's called GCC.

People are perfectly happy to use GCC
for C-based commercial projects in spite
of the fact that libgcc, and GNU
libstdc++, if you're that way inclined,
have *exactly* the same runtime
exception as FSF GNAT's RTS and the
GNAT Pro RTS.

The formal position is that the GCC
compiler itself doesn't assert any licensing
restrictions over target code generated by
it beyond that derived from the original
source code.

I can see that people, especially
commercial lawyers, might be confused
about this, especially if they read all the
hot air that's been blasting over this
newsgroup lately. It's a good thing that
that's unlikely.

Seems to me that one could in theory get
over the licensing issue by writing an
independent BSD-licensed RTS. Not that
this is a small task; deliberately omitting

143

finalization, exception propagation, full
tasking, and multiprocessors would make
it just about feasible for a small team, |
think. But I may be seeing through rose-
tinted specs because of having based
Cortex GNAT RTS on FSF GCC.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 23 May 2018 09:11:55 +0100

Subject: Re: DragonEgg has been revived

Newsgroups: comp.lang.ada

> People are perfectly happy to use GCC
for C-based commercial projects [...]

It’s not just the licensing stupidity with
Ada libs. On the C or C++ front, they can
easily go to Clang and get more targets,
l.e. i0S, Ada programmers can’t.

From: Simon Clubley
<clubley@eisner.decus.org>

Date: Fri, 25 May 2018 13:16:54 -0000

Subject: Re: DragonEgg has been revived

Newsgroups: comp.lang.ada

[-]
I don't care if the compiler itself is GPL.

I _do_ care if the RTS or anything else is
GPL (or even LGPL) and as a result there
are constraints imposed on my binaries or
source code when | use the compiler. |
want to be able to compile programs
using the compiler without having to do
anything else other than ship the binary
for my program.

This is why | talk about generated code
and not the compiler.

The FSF runtime exception is fine for me.

I would like to be able to use Ada in all
the places I can currently use C and C++
code, including bare metal targets.

If I start using Ada in those places, |
would like to be sure that I can still build
Ada code for those targets in 2-5 years
using the current toolchains of the day,
just like I can with C and C++ code.

It would be nice if it was as easy to port a
compiler toolchain to a new OS or
architecture as it is to port a RTOS to a
new target. This would be one answer to
the lack of targets for an Ada compiler.

For those of you who have not done
RTOS based development, an RTOS is
typically very cleanly divided internally
into libraries of generic code and target
specific low level Board Support
Packages (BSP) that implement the
required functionality for a specific piece
of hardware.

All that it typically takes to port to a new
piece of hardware is to write a new BSP
and the interface from the BSP to the rest
of the RTOS is typically very clean and
well documented.

It would be nice if an Ada compiler was
also that clean internally and as well
documented so that you could easily port
it to a new OS or environment yourself if
you needed.

Ada User Journal

Volume 39, Number 3, September 2018

144

[See also “State of the Compiler Market”,
AUJ 38-2, p. 75. —sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Sat, 26 May 2018 20:25:41 -0700

Subject: Announce : Qt5Ada version 5.11.0
(548 packages) release 26/05/2018 free
edition

Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.11.0 final)

Qtbada version 5.11.0 open source and
qtsc.dll,libgt5c.so(x64) built with
Microsoft Visual Studio 2015 in
Windows, gcc x86-64 in Linux.

Package tested with gnat gpl 2012 ada
compiler in Windows 32bit and 64bit ,
Linux x86-64 Debian 9.2

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices,
Sensors,Bluetooth, Navigation and many
others thinks.

Changes for new Qt5Ada release :

Added new packages:
Qt.QStringView,Qt.QGraphicsCustomlte
m,Qt.QGL Context

My configuration script to build Qt 5.11.0
is: configure -opensource -release -
nomake tests -opengl dynamic -gt-zlib -
qgt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-Issleay32 -llibeay32"
-plugin-sqgl-mysgl -plugin-sgl-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.11"
As arole ADA is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with

powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.

Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from

http://hybrid-web.global.blackspider.com/
urlwrap/?q=AXicFc47DoJAEIDhOYKns
HMBIb4SotHY qRFiLOxgd4VJZnfl8goX
tLbwIB5B7P8v-ScHeHOAVM8AROMUS
qJ2nTAZKmTbOCYh2UAFIWvpW-
kHOWK5AmMKLSigmk9kdajk2AgnKpagng
jecph50WBXNB-s-9J5PSrkPdb1HF
n6etI8T69MA19XckpRWATIQt_R-
nLZ1FddIStAWAFCMWz_OvTcj&Z
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.1.0 is based on VTK
8.1.0 (OpenGL2) is fully compatible with
Qt5Ada 5.11.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts

With Qt5Ada you can build any
applications and solve any problems easy
and quickly.

[See also “Qt5Ada”, AUJ 39-1, p. 10.
—sparre]

TCP/IP in SPARK

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Wed, 30 May 2018 17:40:02 -0700

Subject: SPARK TCP-IP

Newsgroups: comp.lang.ada

Does anyone have a checkout/archive of
the SPARK TCP/IP implementation that
used to be hosted here: [...]

From: Matti Oinas
<matti.oinas@gmail.com>

Date: Wed, 30 May 2018 20:41:03 -0700

Subject: Re: SPARK TCP-IP

Newsgroups: comp.lang.ada

Are you looking this one?

https://github.com/AdaCore/spark2014/
tree/master/testsuite/gnatprove/tests/
ipstack

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 2 Jun 2018 16:34:43 +0200

Subject: ANN: Simple components for Ada
v4.29

Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Handling faulty devices added to the
package GNAT.Sockets.
Connection_State_Machine.
ELV_MAX_Cube_Client;

- Asynchronous execution of remote calls
is supported;

- Bug fix in the function To_HTML from
GNAT.Sockets.

Ada-related Tools

Connection_State_Machine.
HTTP_Server;

- Bug fix GNAT.Sockets.Server.Secure.
Anonymous, misspelled Initialize.

[See also “Simple Components”, AUJ 39-
2, p. 66. —sparre]

Cortex GNAT RTS

From: Simon Wright
<simon@pushface.org>

Date: Thu, 07 Jun 2018 17:39:01 +0100

Subject: ANN: Cortex GNAT RTS 20180607

Newsgroups: comp.lang.ada

This release doesn't change any RTS
functionality; instead, it reorganises the
structure of the source code so as to
accommodate the changes made to keep
in synchrony with compiler releases
without using git branches. [I'd like to
shout out a big THANKS! to the person
here who reminded me about using
variant-specific subdirectories for the
changed files. | was getting quite
overwhelmed with running 6 parallel
branches!]

This affects how you build the RTS: you
must specify which release of the
compiler you're building for, e.g.

make RELEASE=gnat-gpl-2017

and the RTS must be installed, either with
the compiler or locally (you can't any
longer use the RTS directly in its build
location).

Find at

https://github.com/simonjwright/
cortex-gnat-rts/releases/tag/r20180607

[See also “Cortex GNAT RTS”, AUJ 39-
2, p. 66. —sparre]

From: Simon Wright
<simon@pushface.org>

Date: Sat, 09 Jun 2018 11:57:51 +0100

Subject: Re: ANN: Cortex GNAT RTS
20180607

Newsgroups: comp.lang.ada

>[.]
To build using the new GNAT CE 2018
ARM-ELF compiler, use:

make RELEASE=gcc8

From: Simon Wright
<simon@pushface.org>

Date: Thu, 14 Jun 2018 21:47:06 +0100

Subject: ANN: Cortex GNAT RTS 2018-06-
14

Newsgroups: comp.lang.ada

This release[1] adds support for the task
aspect Secondary_Stack_Size. Writeup at
[2].

It turns out that it also supports GNAT CE
2018 (use RELEASE=gcc8).

Volume 39, Number 3, September 2018

Ada User Journal

Ada-related Products

[1] https://github.com/simonjwright/
cortex-gnat-rts/releases/tag/r20180614

[2] https://forward-in-code.blogspot.com/
2018/06/secondary-stack-in-
cortex-gnat-rts.html

GNAT Community Edition

From: Simon Wright
<simon@pushface.org>

Date: Fri, 08 Jun 2018 18:58:05 +0100

Subject: GNAT Community Edition 2018

Newsgroups: comp.lang.ada

GNAT Community Edition 2018 is
available. The macOS arm-elf cross
compiler is there too! (phew)

[See also “GNAT Community Edition”,
AUJ 39-1, p. 9. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 8 Jun 2018 21:27:18 +0200
Subject: Re: GNAT Community Edition

2018
Newsgroups: comp.lang.ada

>[..]
Great news! 64-bit Windows and 64-bit
Gtk.

VisualAda

From: alby.gamper@gmail.com

Date: Sun, 24 Jun 2018 01:10:08 -0700

Subject: ANN: VisualAda (Ada Integration
for Visual Studio 2017)

Newsgroups: comp.lang.ada

I am pleased to announce the initial
release of VisualAda. This is a extension
(aka plugin) for Visual Studio 2017 and is
made freely available. Some or the
features of VisualAda are:

1) Full edit, build and debug integration

2) GIT, and TFS source control
integration

3) Limited Intellisense (For now)

4) Project templates targeting both
Desktop and UWP based applications
(Note for UWP applications you will
need the Ada/Winrt bindings available
on GitHub)

Please feel free to download the plug-in
from the following URL

https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

Generic Image Decoder

From: SourceForge

Date: Thu, 28 Jun 2018

Subject: Generic Image Decoder

URL.: https://sourceforge.net/projects/gen-
img-dec/

https://sourceforge.net/projects/
gen-img-dec/files/gid_008.zip/download

The Generic Image Decoder is a package
for decoding a broad variety of image
formats, from any data stream, to any
kind of medium. Unconditionally portable
code: OS-, CPU-, compiler- independent
code.

Features:

- Supported formats: BMP, GIF, JPEG,
PNG, PNM, TGA

- Use of generics and inlining at multiple
nesting levels for fast execution

- Standalone (no external dependency)

- Task safe

- Endian-neutral

- Unconditionally portable

- Pure Ada 95 (nothing compiler/system
specific), can be used in projects in Ada
95, Ada 2005, Ada 2012 and later
language versions

[See also “Generic Image Decoder”, AUJ
36-2, p. 65. —sparre]

Zip-Ada

From: SourceForge

Date: Thu, 28 Jun 2018
Subject: Zip-Ada

URL: http://unzip-ada.sf.net

https://sourceforge.net/projects/
unzip-ada/files/zipada54.zip/download

Zip-Ada is a library for .zip archives. Full
sources are in Ada and are
unconditionally portable. Input and output
can be any stream (file, buffer,...) for
archive creation as well as data extraction.
Task safe and endian-neutral.

Features:

- Files and streams supported, for archives
and entries, for compression and
decompression

- Unconditionally portable

- Task safe

- Endian-neutral

- Standalone

- Zip methods supported for compression:
Reduce, Shrink, Deflate, LZMA.

- Zip methods supported for
decompression: the above methods,
plus: Implode, Deflate64, BZip2

- Pure Ada 95 (nothing compiler/system
specific), can be used in projects in Ada
95, Ada 2005, Ada 2012 and later
language versions

[See also “Zip-Ada”, AUJ 38-4, p. 178.
—sparre]

Bar Codes

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>
Date: Thu, 5 Jul 2018 02:49:32 -0700
Subject: Ann: Ada Bar Codes v.002
Newsgroups: comp.lang.ada

145

Ada Bar Codes is free and fully Ada
open-source.

- Supported bar code formats in v.002:
Code 128 and QR Code (new)

- Ready-to-use output formats:
0 PDF, SVG (vector graphics)
0 PBM (raster graphics)

http://ada-bar-codes.sf.net/

The project Ada Bar Codes provides a
package for generating various types of
bar codes (1D, or 2D like QR codes) on
different output formats, such as PDF or
SVG.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 5 Jul 2018 17:25:15 +0200

Subject: Re: Ann: Ada Bar Codes v.002

Newsgroups: comp.lang.ada

>[.]

You can use it to display bar codes with
Gnoga using Gnoga_Bar_Codes:

https://github.com/jrcarter/
Gnoga_Bar_Codes

[See also “Gnoga”, AUJ 39-2, p. 65.
—sparre]

Ada-related Products

GNAT Pro for BlackBerry
QNX

From: AdaCore Press Center

Date: Tue, 15 May 2018

Subject: AdaCore’s GNAT Pro Ada
Toolchain Released for BlackBerry QNX
- AdaCore

URL: https://www.adacore.com/
press/gnat-pro-ada-toolchain-for-
blackberry-gnx

AdaCore and BlackBerry partnering to
support development of critical
applications

NEW YORK and PARIS, May 15, 2018-
AdaCore today announced a hew
partnership with BlackBerry to support
the company’s industry-leading QNX
operating system across AdaCore’s family
of GNAT Pro software tools, including
GNAT Pro Assurance, GNAT Pro
Enterprise and GNAT Pro Developer. The
support for QN X within the GNAT Pro
product line will further expand the broad
range of embedded platforms available to
Ada users and also offer C developers on
QNX an easy migration path to the Ada or
SPARK languages.

GNAT Pro for QNX is initially targeted
for the ARM Cortex A family with plans
to support all architectures in the future.

GNAT Pro for QNX comes with a full
Ada run-time library supporting all
versions of the language from Ada 83
through Ada 2012, together with an early
implementation of features that are

Ada User Journal

Volume 39, Number 3, September 2018

146

expected to be in the next Ada standard.
The product includes the GNAT
Programming Studio (GPS) IDE and the
Eclipse plugin GNATbench, several basic
static analysis tools for metrics
computation and coding standard
verification, the Ada unit testing tool
GNATtest, and the SPARK Discovery
toolset that can be used to gain experience
with formal methods in general and the
SPARK language in particular.

“BlackBerry’s QNX operating system is
the foundational software in automotive,
industrial automation, medical, defense,
railway and many other mission-critical
systems that require reliability, safety, and
security,” said Grant Courville, Head of
Product Management at BlackBerry
QNX. “We are pleased to partner with
AdaCore to support the integration of the
GNAT Pro Ada software as this will
enable customers who require Ada
language support to leverage both
companies’ expertise and technology to
build reliable, safe and secure QNX-based
products.”

"In recent years we've seen increasing
interest in Ada from domains outside of
the language's traditional aerospace and
defense niche," said Quentin Ochem, lead
of Business Development at AdaCore.
"We're thrilled to combine our forces with
one of the leading players in the mission-
critical embedded software domain,
BlackBerry QNX. Our joint solution will
help developers design systems at the
highest levels of reliability, safety and
security."

[.]
RapiTest

From: Rapita Systems

Date: Wed, 16 May 2018

Subject: (Re)-introducing RapiTest | Rapita
Systems

URL: https://www.rapitasystems.com/
news/re-introducing-rapitest

Bowing to popular demand, we've
renamed our (formerly)
RapiTestFramework product to RapiTest.
Future versions of the tool will be
released with the new name, while
existing versions will continue to work as
normal.

Why did we make the change? One
reason among many is that the former
name was somewhat difficult on the
tongue and many people, including our
own engineers, were already calling the
product RapiTest.

RapiTest will continue to reduce the cost
of critical software verification by helping
engineers efficiently write, run and
analyze results from requirements-based
tests.

AdaCore Extends Support
for Wind River VxWorks
Portfolio

From: AdaCore Press Center

Date: Tue, 19 Jun 2018

Subject: AdaCore Extends Support for Wind
River VxWorks Portfolio - AdaCore

URL: https://www.adacore.com/press
/adacore-extends-support-for-wind-
river-vxworks-portfolio

GNAT Pro Ada and VxWorks offer 32-bit
and 64-bit support on the latest ARM,
Intel, and Power multi-core processors

PARIS & NEW YORK & MUNICH,
Germany, June 19, 2018 — Avionics
Electronics Europe Conference —
AdaCore, a trusted provider of software
development and verification tools, today
announced the availability of its flagship
GNAT Pro Ada Development
Environment for the Wind
River®VxWorks®7 real-time operating
system (RTOS), on leading multi-core
hardware platforms. GNAT Pro 18 now
supports VxWorks 7 on the ARM (64-
bit), Power (64-bit) and Intel (32-bit)
architectures, under both Linux and
Windows development environments.
These releases extend GNAT Pro’s
coverage of the Wind River VxWorks
platforms, being added to the existing
support for VxWorks 7 targets (ARM 32-
bit, Power 32-bit, and Intel 64-bit),
VxWorks 6 and VxWorks 653,
reinforcing the companies’ longstanding
strategic alliance.

“Adding support for the new VxWorks
platforms continues a long history of Ada
on VxWorks,” said Jamie Ayre,
Commercial Director at AdaCore.
“Hundreds of projects in various domains
have benefitted from the close
relationship between Wind River and
AdaCore. Our software development and
verification tools combined with the
power of VxWorks allow our customers
in the aerospace community — both
commercial and military — to develop
reliable, safe and secure applications that
need to meet the most demanding
standards.”

“GNAT Pro Ada’s capability to support
Wind River VxWorks 7 on ARM, Intel,
or Power hardware platforms will drive
down both program cost and risk,” stated
Chip Downing, senior director of
aerospace and defense at Wind River.
“Opening up 64-bit capabilities on multi-
core processors will enable a vast new
range of applications for our joint
customers.”

GNAT Pro customers on VxWorks can
choose from several specialized Ada run-
time libraries based on project
requirements:

- The ZFP (Zero Footprint Profile) with
minimal run-time code.

Ada and Operating Systems

- The Cert profile, which extends the ZFP
with features including support for
ARINC-653 APEX processes (on
VxWorks 653) in Ada or mixed-
language applications. The Cert profile
is amenable to analysis for inclusion in
systems requiring certification under
standards such as DO-178B or DO-
178C.

- The Ravenscar-Cert profile, which
extends the Cert profile with the
Ravenscar tasking subset, likewise
appropriate for systems needing
certification

- Full Ada, for maximal expressibility
when certification is not required.

In addition to using one of the certifiable
run-time libraries on VxWorks, customers
can reduce certification costs by adopting
one of AdaCore’s qualifiable verification
tools. These include the CodePeer
advanced static analysis tool for Ada, the
GNATCcheck coding standard checker,
and the GNATcoverage code coverage
analyzer. Certification material for the
Cert and Ravenscar-Cert libraries, and
qualification material for the qualifiable
tools, are available as an option to
customers with a subscription to the
GNAT Pro Assurance edition.

One of the most promising developments
in the avionics community is the Future
Airborne Capability Environment
(FACE™) initiative, which can help
reduce system costs through portable
components. VxWorks 653 is the first
Commercial-Off-The-Shelf (COTS)
product to be certified as conformant to
the FACE Technical Standard’s Operating
System Segment (OSS) Safety Base
Profile. GNAT Pro for VxWorks 653 can
thus offer users the benefits of Ada’s high
reliability together with the safety-critical
support and ease of rapid component
integration that come from VVxWorks 653
and its FACE conformance.

-]

Ada and Operating
Systems

MacOS: GCC for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Sun, 20 May 2018 11:48:04 +0100

Subject: ANN: GCC 8.1.0 for arm-eabi

Newsgroups: comp.lang.ada

This is GCC 8.1.0, rebuilt as a cross-
compiler from macOS to ARM-EABI
(tested with the Cortex-M3 as found on
the Arduino Due[1] and the Cortex-M4 as
found on the STMicroelectronics[2]
STM32F4 Discovery and STM32F429I
Discovery boards; but note that GCC has
implemented multilib support for other
ARM chips).

Volume 39, Number 3, September 2018

Ada User Journal

Ada and Operating Systems

Find at

https://sf.net/projects/gnuada/files/
GNAT_GCC%20Mac%2005%20X/8.1.0
/arm-eabi/

GNAT GDB 2017 (rebuilt for arm-eabi)
is included.

The compiler comes with no Ada
Runtime System (RTS). See the Cortex
GNAT Run Time Systems project[3] for
candidates.

NOTE 1: the compiler/RTS interface has
changed; for the time being, you will need
to check out the [gcc8] branch.

NOTE 2: for the same reason, this
compiler can't presently be used with
AdaCore's bb-runtimes repository at
Github[4].

The compiler is known to run on El
Capitan and High Sierra; it may not run
on earlier OS X releases.

[1] http://www.arduino.com
[2] http://www.st.com

[3] https://github.com/simonjwright/
cortex-gnat-rts/tree/gcc8

[4] https://github.com/AdaCore/bb-
runtimes

[See also “Mac OS X: GCC for ARM-
EABI”, AUJ 38-2, p. 77. —sparre]

Windows: 64 bit Bindings?

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>
Date: Mon, 21 May 2018 12:30:27 -0700
Subject: win64ada or win_32_64_ada ?
Newsgroups: comp.lang.ada

Are there win64ada bindings around, or
win_32_64 _ada (they would adapt
depending on the compilation target, like
GNATCOM & GWindows do), or do the
current win32ada just work with the 64
bit address types?

Debian: Yearly Migration

From: Nicolas Boulenguez
<nicolas.boulenguez@free.fr>

Date: Sat, 26 May 2018 15:11:22 +0200

Subject: yearly migration

Newsgroups:
gmane.linux.debian.packages.ada

Next default C compiler on Debian will
be gcc-8. Most Ada packages already
build with trivial changes [1].

Every library will need to rename its -dev
and so package. Such renamings take time
because they imply a manual review in
the NEW queue.

Please consider updating your packages
and uploading them to experimental,
where gnat already depends on gnat-8.
Once the dust has settled there, we will
reupload a consistent set to unstable and
hopefully see it quickly migrate to testing.

This is an opportunity to apply unrelated
pending changes requiring package

renamings, like packaging a new
upstream version [2].

[1] As usual, adacontrol fails because of
incompatibilities between gnat and
ASIS. Updating ASIS [2] will hopefully
fix this.

[2] Adacore usually updates its GPL
packages in may.

By the way...

Until now, Debian has supported the
coexistence of different versions for the
default Ada and C compilers. The
motivation is to allow a time window or a
release where $adaversion < $cversion, so
that GCC does not need to wait for all
Ada packages to update its version.

More and more packages rely on the
gprbuild tool. Currently, gprbuild assumes
that all (default) compilers produce the
same ABI for all languages. Any effort by
successive maintainers to do better has
been wasted for 8 years.

- If the user must configure a compiler
version manually, they will complain.

- If the tool selects $cversion, it will find
no Ada compiler.

- If the tool selects $adaversion, people
writing pure C will want the default C
ABI.

I suggest that we stop promising that we
support the divergence. As far as | know,
it has been some years since GCC has not
been waiting just for Ada.

Any idea?

Debian: Package
Maintenance

From: Stephane Carrez
<Stephane.Carrez@gmail.com>
Date: Sun, 10 Jun 2018 15:25:24 +0200
Subject: Asking for best practices to
maintain a debian Ada package
Newsgroups:
gmane.linux.debian.packages.ada

In the past, I've made several Debian
packages for various Ada libraries and
tools I'm writing. I've read carefully the
Debian Ada policy and I think I followed
what was explained. At the end, | was
able to provide Debian packages for
Ubuntu trusty (14.04) and raring (13.04).
You may have a look at the list:

https://blog.vacs.fr/ivacs/debian/
ubuntu-trusty/index.html

I would like to resurrect these packages
and get a better way on how to manage
the debian package files. I have a couple
of questions and need your advices on
how to maintain such files on different
Debian versions.

How do you maintain your debian/* files
for different versions of Debian and
different versions of gnat?

Do you have recommendations on
package naming to take into account the

147

library version and the gnat compiler
version?

How can I ship a version A of a package
for gnat-7 and a version A of the same
package for gnat-8?

I'm aware of the Ada-France monotone

server. | was able to get the package files
for several packages (libaws, libxmlada)
but it looks like only gnat-8 is used now.

From: Ludovic Brenta <ludovic@Iludovic-
brenta.org>

Date: Wed, 20 Jun 2018 21:52:54 +0200

Subject: Re: Asking for best practices to
maintain a debian Ada package

Newsgroups:

gmane.linux.debian.packages.ada

> [...] How can | ship a version A of a
package for gnat-7 and a version A of
the same package for gnat-8?

The "aliversions" must be different; the
"aliversion" is part of the package
name. The numerical versions are
separate from the name and they can be
the same.

For example:
- libfool-dev (=8.2.4-4) for gnat-7
- libfoo2-dev (=8.2.4-4) for gnat-8

You would maintain these two as
branches in your version control system.

> [...] it looks like only gnat-8 is used
now.

Yes, as part of the policy we choose a
single version of the compiler and build
everything with it. This makes all Ada
packages compatible with one another.
We don't have the manpower (aka
courage, aka time) to maintain several
versions of gnat together. Also we don't
want a situation where one Ada library is
available for one compiler but not the
other.

Debian, Ubuntu and Fedora:
FSF GNAT

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 11 Jun 2018 16:03:04 +0200

Subject: Re: GNAT Community Edition
2018

Newsgroups: comp.lang.ada

> Where is GCC 8 already available?

Debian (buster), Ubuntu, Fedora, all have
GNAT 8, works just fine.

Linux: Docker Images

From: Tomek Wazkuski
<tomek.walkuski@gmail.com>

Date: Fri, 29 Jun 2018 02:26:50 -0700

Subject: ANN: Ada / GNAT Docker image

Newsgroups: comp.lang.ada

Hi, for all you Docker folks: Ubuntu with
GNAT installed:

https://hub.docker.com/r/tomekw/
ada-gnat/

Ada User Journal

Volume 39, Number 3, September 2018

148

Project repository:
https://github.com/tomekw/ada-gnat

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Fri, 29 Jun 2018 08:09:07 -0700

Subject: Re: ANN: Ada / GNAT Docker
image

Newsgroups: comp.lang.ada

In case if somebody wants Docker image
for GNAT Community 2018, | have one:

https://hub.docker.com/r/reznik/gnat/

Project repository:
https://bitbucket.org/reznikmm/gnat

It contains just compiler (no any extra
library such as GNATCOLL, xmlada,
bareboard RTL).

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat, 07 Jul 2018 16:55:12 +0200

Subject: Re: ANN: Ada / GNAT Docker
image

Newsgroups: comp.lang.ada

There is also a Docker image with GNAT
on Debian by Samuel Tardieu:

https://hub.docker.com/r/rfc1149/gnat/

That's the one | use for testing my Ada
libraries, when they are pushed to
Bitbucket.

[See also “Getting Started with AVR-
Ada”, AUJ 38-4, p. 180. —sparre]

References to
Publications

Concurrent Programming

From: Mehdi Saada
<00120260a@gmail.com>

Date: Sun, 20 May 2018 03:53:18 -0700

Subject: tutorial for concurrent
programming techniques (in Ada).

Newsgroups: comp.lang.ada

Is there somewhere such tutorial online?

Something with the basic techniques, and
the use of standard libraries?

I'm at my first scheduling program, and
I'm always telling myself "I would like to
do that and that, | saw it somewhere but
I've no clue how to do it". Things that are
complicated per se, but beginners would
gain to see gathered.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Sun, 20 May 2018 10:21:26 -0400

Subject: Re: tutorial for concurrent
programming techniques (in Ada).

Newsgroups: comp.lang.ada

> |s there somewhere such tutorial online?
Well...

- https://en.wikibooks.org/wiki/
Ada_Style_Guide/Concurrency

- https://en.wikibooks.org/wiki/
Ada_Programming/Tasking

Though in truth, one should have some
familiarity with general tasking concepts
(semaphores, mutex, critical section) --
which used to be part of any course in
operating systems.

Mostly concerned with hard real-time:

- https://www.amazon.com/Concurrent-
Real-Time-Programming-Alan-
Burns/dp/0521866979

- https://www.amazon.com/Analysable-
Real-Time-Systems-Programmed-
Ada/dp/1530265509

- https://www.amazon.com/Real-Time-
Systems-Programming-
Languages/dp/0201729881

More general...

- https://www.adacore.com/papers/a-
comparison-of-the-concurrency-and-
real-time-features-of-ada-95-and-java

- https://www.amazon.com/
Communicating-Sequential-Processes-
International-Computing/dp/
0131532715

- http://greenteapress.com/wp/
semaphores/ (semaphores can be
modeled in Ada using protected objects;
though I seem to recall textbooks pre-
Adag5 showing how to do them via
rendezvous and tasks)

> Something with the basic techniques,
and the use of standard libraries?

Ada's tasking model is built into the
language itself, and is not a library
(except as affected by the degree of the
run-time system and operating system
features -- bare-board development
requires one to provide a run-time that
supports tasking natively, whereas
Linux/Windows development punts from
the run-time to the operating system).

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Tue, 22 May 2018 07:25:48 -0700

Subject: Re: tutorial for concurrent
programming techniques (in Ada).

Newsgroups: comp.lang.ada

>1..]

Not a tutorial per se, but this is an
IAWESOME! read: “Concurrent and
Real-Time Programming in Ada” [see
link above —sparre]

“Building Parallel, Embedded, and Real-
Time Applications with Ada” (Covers
PolyORB, for distributed programming):
http://www.cambridge.org/core_title/gh/3
95592

Definitely the first one. You will greatly
cover tasks, protected objects and real-
time scheduling. All along it exemplify
how to program different systems like
worker pool, futures etc. Worth every

penny.

References to Publications

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 23 May 2018 10:30:12 -0700

Subject: Re: tutorial for concurrent
programming techniques (in Ada).

Newsgroups: comp.lang.ada

>[.]

The first book goes deeper about
concurrency and scheduling. ~300p on
concurrency and ~150p on scheduling.
(Alan Burns and Andy Wellings)

The second book is ~100p to present the
Ada itself (type model, oop etc), ~100p
for concurrency, ~100p for distributed
computing (PolyORB, Corba, etc) and
finally ~100p for real-time and
scheduling. (John W. McCormick, Frank
Singhoff, Jerome Hugues)

Note: It looks to me they are not the same
people.

Best is to buy both. They are very neat
book and inspire to do everything using
Ada. :)

Simple Blockchain

From: Tomek Wazkuski
<tomek.walkuski@gmail.com>

Date: Wed, 20 Jun 2018

Subject: Simple blockchain in Ada

URL.: https://tomekw.com/simple-
blockchain-in-ada/

I consider myself a late adopter. Everyone
talks about blockchain these days.
Everyone tries to apply the technology
everywhere, even when it doesn't make
sense. So let's learn by doing and try to
implement the simple blockchain from
scratch. And let's do this in Adal

Wikipedia defines blockchain as:

“A blockchain, originally block chain, is
a continuously growing list of records,
called blocks, which are linked and
secured using cryptography. Each block
typically contains a cryptographic hash of
the previous block, a timestamp, and
transaction data. By design, a blockchain
is resistant to modification of the data.”

Twitter has a different opinion:

“High-latency, low-throughput, append-
only database with very expensive
transaction commit protocols just doesn't
have the same ring to it as "Blockchain™
does it?”

So it looks like we have to model:

- blocks: timestamped records that are
able to store some kind of payload

- achain of blocks, a.k.a., the
blockchain

- a way to prove the validity of the
whole blockchain

- a proof of work to implement the
commit protocol.

Block can be implemented as a new Ada
type, Block.Object:

Volume 39, Number 3, September 2018

Ada User Journal

References to Publications

[.]

package Simple_Blockchain.Block is
type Object is private;
[-]

private
type Object is record

Cryptographic_Hash_Current_Block :

String (1 .. 64);

Cryptographic_Hash_Previous_Block
: String (1 .. 64);

Timestamp : Time;

Transaction_Data_Payload :
Unbounded_String;

end record;
end Simple_Blockchain.Block;

The complete, working code can be found
at tomekw/simple_blockchain Github
repository: https://github.com/tomekw/
simple_blockchain

[.]
Book on Cyber Security

From: AdaCore Press Center

Date: Wed, 27 Jun 2018

Subject: AdaCore Shows How to Address
the Cyber Security Challenge - AdaCore

URL.: https://www.adacore.com/press/
adacore-shows-how-to-address-the-
cyber-security-challenge

Free book offers guidance for achieving
secure and reliable software

PARIS & NEW YORK &
GAITHERSBURG, Maryland, June 27,
2018 — Workshop on Sound Static
Analysis for Security - AdaCore, a trusted
provider of software development and
verification tools, today announced the
availability of AdaCore Technologies for
Cyber Security, the latest volume in its
series of free publications on high-
assurance software. Authored by
internationally known experts Dr.
Roderick Chapman and Dr. Yannick
Moy, the book explains why making a
cyber system secure is so difficult and
shows how using appropriate
programming languages and tools can
contribute to a solution. Languages such
as Ada and SPARK, and verification
based on formal methods or other sound
static analysis techniques, can prevent
vulnerabilities from being introduced in
the first place. They can also detect latent
issues in legacy codebases, including
many of the weaknesses in the MITRE
Corporation’s Common Weakness
Enumeration (CWE).

“Many of the nasty security-related
incidents that we’ve seen over the past
few years stemmed from entirely
preventable software errors,” said co-
author Yannick Moy, a senior software
engineer at AdaCore. “By following the
guidance presented in our new book,
software developers can learn from
history and avoid repeating it.”

“Developing software that is robust in the
face of malicious attack is a huge

engineering challenge,” said co-author
Roderick Chapman. “It requires a world-
class combination of languages,
technologies, disciplines and skills. Ada,
SPARK, and AdaCore’s tools can provide
some key pieces of that puzzle. In
particular, AdaCore has pioneered the
development of static verification
techniques that are both formal and
sound, and so offer real assurance. | hope
the book will inform, entertain, and
challenge readers’ preconceptions about
how high-assurance software can be
developed and verified.”

AdaCore Technologies for Cyber Security
contains four principal chapters.

- “The Challenge of Secure Software”
identifies the various factors that make
security so hard to achieve, ranging from
the interconnected nature of modern
systems to the limits of testing as a
verification mechanism. The chapter
concludes with “A Manifesto for Secure
Software” that outlines the basic
principles for high-integrity software
engineering.

“Languages, Tools and Technologies
Overview” summarizes the Ada and
SPARK languages, as well as
AdaCore’s tools and technologies, and
highlights their contributions to system
security.

“Security Vulnerabilities and Their
Mitigation” considers a number of
specific high-profile software
vulnerabilities, inspired by the
CWE/SANS “Top 25 Most Dangerous
Software Errors”, and discusses how
each can be prevented or mitigated using
Ada, SPARK, and AdaCore’s tools.

- “Industrial Scenario Examples” presents
a number of security-related scenarios
that may arise in real-world projects.
Each opens with a description of the
context and the security issue, and then
shows how either Ada or SPARK, in
conjunction with the relevant AdaCore
tools, can contribute. Each scenario is
illustrated with one or more examples
drawn from experience with customers
and industrial projects.

Complementing the discussion in these
chapters, additional details and examples
are provided in two appendices. One
appendix focuses on the MITRE
Corporation’s Common Weakness
Enumeration (CWE) and shows how the
use of Ada and/or SPARK, as well as
AdaCore’s tools, can address specific
CWEs. The second appendix shows how
contract-based programming in SPARK
or Ada, verified by the corresponding
static or dynamic analysis, can help avoid
the “SQL Injection” vulnerability.

“AdaCore Technologies for Cyber
Security” is available at

<http://adacore.com/cyber-security-
book>; to request a printed copy, please
contact info@adacore.com.

149

-]

Introduction to Ada
Programming

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Fri, 29 Jun 2018 20:23:21 -0700

Subject: Introduction to Ada Programming,
2nd Edition

Newsgroups: comp.lang.ada

In 2016, | published an introductory Ada
book as an e-book. This time around, |
have created a second version of this
book, located here:
https://amzn.to/2KC3Zic

This is what the second edition has:

- It's in print. You can buy a printed
version. I've read programming e-books
before, but mostly it has been a question
if my screen/monitor was large enough
to correctly display the source-code (it
often was, but was impossible on an
iPhone).

I added a chapter on networking.
Networking is something that I'm
working on improving my
understanding. Only after | sufficiently
understood how to implement examples
in Ada did | add this to my next book.

There is a chapter on how to build
libraries. Packages and methods are
great for encapsulating code and making
it more reusable. However, not having to
re-compile the code is simply
phenomenal.

There is a chapter on proofs. In my
previous book, this was a part of a
chapter. In this book, it is a chapter.
Such an important topic earned its own
chapter.

I had a professional editor looked over
the book. After my first attempt, |
realized that there is plenty of room for
improvement in subsequent versions. As
a result, I hired a professional to give me
invaluable input on specific things that |
can do better.

I'm open to sending PDFs as review
copies, please send your requests to:
introductory.ada@gmail.com

Thank you for those who have helped me
better understand Ada!

[See also “Introductory Ada Programming
Book”, AUJ 38-1, p. 10. —sparre]

Meéthodes de Génie Logiciel
avec Ada 95

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Wed, 4 Jul 2018 08:21:55 -0700

Subject: Looking to buy Méthodes de Génie
Logiciel avec Ada 95 (paper version)

Newsgroups: comp.lang.ada

I am looking to buy the paper version of:

Ada User Journal

Volume 39, Number 3, September 2018

150

Méthodes de Génie Logiciel avec Ada 95,
J-P. Rosen, ISBN 2 7296 0569 X

Anyone has a copy and would to sell it to
me? olivier.henley@
‘google_email_service'.com

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 5 Jul 2018 16:42:36 +0200

Subject: Re: Looking to buy Méthodes de
Génie Logiciel avec Ada 95 (paper
version)

Newsgroups: comp.lang.ada

[.]

It has been issued as a WikiBook (thanks
to Pascal Pignard):

https://fr.wikibooks.org/wiki/
Méthodes_de_génie_logiciel_avec_Ada

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 6 Jul 2018 11:38:25 +0200

Subject: Re: Looking to buy Méthodes de
Génie Logiciel avec Ada 95 (paper
version)

Newsgroups: comp.lang.ada

[...] | made it available on Adalog's web
site. The link is at the bottom of the page
at:

http://www.adalog.fr/fr/livrejpr.html

Ada Inside
CLARREO Pathfinder

From: AdaCore Press Center

Date: Tue, 22 May 2018

Subject: University of Colorado’s
Laboratory for Atmospheric and Space
Physics adopts Ada and GNAT Pro for
NASA project

URL: https://www.adacore.com/press/
university-of-colorados-laboratory-for-
atmospheric-and-space-physics-adopts-
ada-and-gnat-pro-for-nasa-project

Ada selected over C to run on a Cortex
M1 core

PARIS & NEW YORK,May 22, 2018 —
AdaCore today announced that the
University of Colorado’s Laboratory for
Atmospheric and Space Physics (LASP)
has selected the Ada language and the
GNAT Pro for the ARM Cortex product
for NASA’s Climate Absolute Radiance
and Refractivity Observatory
(CLARREDO) Pathfinder mission.
CLARREO Pathfinder will deploy a
Reflected Solar spectrometer on the
International Space Station (ISS) starting
in 2021 that will detect the complete
spectrum of radiation from the Sun
reflected by Earth.

LASP has selected the Ada language over
C, to develop the orchestration and
interface portions of the CLARREO
Pathfinder flight software, which is
responsible for controlling the instruments
and interfacing with the ISS. The

application will run on an ARM Cortex
M1 FPGA board, using a bare metal
configuration together with the Ravenscar
micro-kernel provided by the GNAT Pro
toolchain.

"We selected Ada and the Ravenscar
micro-kernel for several reasons: it is as
efficient as C, allows object-oriented
design, will increase reliability, and
provides a tasking system without
introducing a great deal of complexity
like many of the other options we
considered,” said Mathew Merkow,
CLARREO Pathfinder flight software
lead at LASP.“Ada provided an extremely
robust and efficient foundation for our
framework, Adamant. We partnered with
AdaCore to port Ravenscar to the Cortex
M1; they have been a great partner, and
we are excited to continue our
relationship with them on this and future
projects.”

“The CLARREOQ Pathfinder project
represents a new generation of
applications developed with Ada, in areas
where C has been the traditional choice,”
said Quentin Ochem, lead of business
development at AdaCore. “We are excited
to support the usage of our technology to
meet the ever-increasing reliability
requirements and challenges of space
missions.”

[.]
Jobs

From: eduardsapotski@gmail.com

Date: Sun, 3 Jun 2018 23:15:27 -0700

Subject: How to find remote job as Ada-
developer?

Newsgroups: comp.lang.ada

I have more than ten years of experience
in programming. Mainly programmed on
C# and Java. Very long ago |
programmed Atmel-microcontrollers on
C-language. In recent times I'm sick of
Java and C#. A year ago | met Ada-
language. | like everything! Ada is the
most correct programming language |
have ever met! While using Ada-language
only in their small projects.

I have no experience of industrial
development in Ada-language. How to get
it? There are no vacancies for Ada-
developers in my region.

I'm not really interested in money. | am
willing to work for a nominal fee, only to
gain experience.

Who can advise?

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 3 Jun 2018 23:28:55 -0700

Subject: Re: How to find remote job as Ada-
developer?

Newsgroups: comp.lang.ada

>[.]
You're basically stuck with military,
aerospace, some car company's and train

Ada in Context

company's, | think there's some medical
equipment out there using Ada.

Ada is just not advertised enough.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 04 Jun 2018 08:49:10 +0200

Subject: Re: How to find remote job as Ada-
developer?

Newsgroups: comp.lang.ada

> | have no experience of industrial
development in Ada-language. How to
get it?

Check out the list of companies AdaCore
advertises as their customers.

See if you would be willing to move to
any of their locations.

Check if they have open positions and
apply - or send them unsolicited
applications.

I doubt that you will get a remote position
without documented experience in Ada.
Even with documented Ada experience, it
is hard. And for big projects, you should
expect 6-24 months on-site just to get to
know the project well enough to be able
to work independently.

Ada in Context

Anonymous Allocators

From: Mehdi Saada
<00120260a@gmail.com>

Date: Wed, 16 May 2018 01:23:19 -0700

Subject: Re: little precision about
anonymous access types

Newsgroups: comp.lang.ada

I may add, that the craziest thing was to
allow the very possibly of using allocators
with non-discriminant/non-parameter
anonymous access (though I have no idea,
and it's not easy to find, where and for
how long goes things like values like
my_func(new something’, ...) types. Their
existence, that forbid and uselessness
aside, it wouldn't be that much of a
loophole. At least provide a way to bind
the objects' life time to something,
dudes...

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 17 May 2018 16:20:14 -0500

Subject: Re: little precision about
anonymous access types

Newsgroups: comp.lang.ada

The better solution here is restriction
No_Anonymous_Allocators (see
H.4(8.1/3)). Using that restriction helps
because it forces all allocation to named
access types (for which you can do
deallocation in all of the normal ways).
This is just to note that Ada does have
ways to mitigate this problem (I noted
another one, pragma
Default_Storage_Pool, in a previous
message). The annoyance is that these
things aren't the default.

Volume 39, Number 3, September 2018

Ada User Journal

Ada in Context

ARM ELF Development
with GNAT GPL

From: Adam Jensen <hanzer@riseup.net>
Date: Wed, 23 May 2018 06:37:44 -0000
Subject: How to configure GNAT GPL on

x86-64 Linux for ARM ELF development
Newsgroups: comp.lang.ada

I would like to tinker with Ada and
SPARK embedded real-time software
development. [...]

I have installed AdaCore's GNAT GPL
and SPARK Discovery on Ubuntu 18.04
LTS[..]

And I've installed gnat-gpl-2017-arm-elf-
linux-bin.tar.gz [...]

I am following this tutorial:
http://www.inspirel.com/articles/
Ada_On_Cortex.html

[.]

Given:

$ export PATH="$HOME!/.local/gnat-
arm/bin:$PATH"

The tutorial suggests that maybe this
(below) might produce a binary suitable
to be loaded onto the MCU:

$ arm-eabi-gcc -¢c -mcpu=cortex-m4 -
mthumb program.adb

$ arm-eabi-Id -T flash.ld -o program.elf
program.o

$ arm-eabi-objcopy -O binary
program.elf program.bin

This is what actually happens:

$ arm-eabi-gcc -¢ -mcpu=cortex-m4 -
mthumb program.adb

fatal error, run-time library not installed
correctly

cannot locate file system.ads
compilation abandoned

I guess that the LD_LIBRARY_PATH
and GPR_PROJECT_PATH environment
variables should be set but | don't yet
understand enough to make reasonable
guesses.

Any advice on how to proceed would be
very much appreciated!

From: Simon Wright
<simon@pushface.org>

Date: Wed, 23 May 2018 09:07:51 +0100

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> Any advice on how to proceed would be
very much appreciated!

I think that the reason why the tutorial
works and your attempt doesn't is that the
tutorial was developed on a Raspberry Pi,
which is already an ARM-based machine,
so the native compiler actually has a
runtime (i.e. system.ads etc) visible to it.

Yours doesn't, and gcc-for-ada must see
an RTS.

I managed to get a compilation using this
over-the-top incantation:

$ gprbuild -c -u -f program.adb --
target=arm-eabi --RTS=zfp-stm32f4

but a simpler (more memorable!)
procedure might be to construct your
own:

1. Create directories adainclude/, adalib/

2. Copy $prefix/arm-eabi/lib/gnat/zfp-
stm32f4/gnat/system.ads to your
adainclude/ ($prefix is the root of your
compiler installation, I think
~/.local/gnat-arm)

The ZFP (zero footprint) runtime is the
closest to what you need, and the fact that
the -stm32f4 part isn't quite right
shouldn't matter; | suspect that system.ads
is the same for all the zfp runtimes.

Now,
$ arm-eabi-gcc --RTS=. -c program.adb

From: Adam Jensen <hanzer@riseup.net>

Date: Thu, 24 May 2018 07:35:46 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

>[.]
> $gprbuild -c -u -f program.adb --
target=arm-eabi --RTS=zfp-stm32f4

Many thanks, this works! | do not yet
know why it works - what it is doing - but
the hint is a valuable. It occurred to me
that I should be looking for AdaCore
documentation. | have yet to find a
"getting started" tutorial for embedded
development aimed at scientists,
engineers and other technically mature
people (ideally, such a tutorial would be
comprehensive, to the point, and regularly
tested), but | did find:

GPRbuild and GPR Companion Tools
User’s Guide <https://docs.adacore.com/
gprbuild-docs/html/gprbuild_ug.htmI>

and

GNAT User’s Guide Supplement for
Cross Platforms
<http://docs.adacore.com/live/wave/
gnat_ugx/html/gnat_ugx/gnat_ugx.html>

By mining these two documents it might
be possible to extract a basic explanation
for these very first steps of the embedded
development process.

It is curious that the Ada technology's
utilization of the system engineering
approach has not [yet] been extended into
the pedagogical component. After all,
software development is a very human-
centric process.

But I digress. Thanks again for the
guidance! After extracting the basics of
project management from the core
documentation, | hope to find a build
process that enables the use of a

151

Ravenscar profile. And after that | hope to
configure the development environment
to include SPARK process components in
the real-time embedded system. Does this
seem reasonable?

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 24 May 2018 12:12:26 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

>[.]

The error you saw "Cannot find
system.ads" and Simon's answer arise
because, targeting small embedded CPUs,
you are looking below the full Ada
environment (supplied by the runtime
system (RTS) on the host machine, to
targets which may require unique
runtimes supplying the facilities you need
and nothing more (thanks to potential
space limitations).

As such | would suggest a ZFP RTS as a
good short-term study, for several
reasons:

- it can be a pretty small codebase, but
revealing in terms of how things are
done and how to adapt them.

- there are a plethora of targets out there,
un- or semi-supported by Ada, from the
AVR and MSP430 to ARM cores from
ST, NXP, Tl and others. Starting with
the STM4 as you are is good, but you
may want to port to other platforms for
cost, power, security or other reasons ...
the TI Hercules which runs dual ARM
cores in lockstep for safety, has obvious
attractions as an Ada target, for
example.

Nice price too ... https://store.ti.com/
LAUNCHXL-TMS57004.aspx

And porting to these builds on
understanding the RTS, starting with the
simplest - ZFP - as in Simon's suggestion
- or AVR-Ada or my MSP430-Ada
adaptation. I finally got round to
machining the case and bezel, so | am
wearing a wristwatch running Ada, telling
the time 1970's style, in under 1 kilobyte
including RTS.

(the current version still has 200 bytes of
C startup code which the linker insists on
inserting by default; one TODO is to
persuade the linker to let me replace that
with pure Ada and strip out the
unnecessary stuff)

You suggest going in 2 more interesting
directions:

- Building up to a Ravenscar profile: |
believe Simon's work so far builds on
FreeRTQOS, but a "native" Ravenscar
RTOS would be nice too...

- SPARK qualification would be excellent
... again, especially for the Hercules.
And again, a SPARK proven ZFP RTS

Ada User Journal

Volume 39, Number 3, September 2018

152

would be a good base to build on, and a
relatively simple place to start.

From: Adam Jensen <hanzer@riseup.net>

Date: Fri, 25 May 2018 04:45:16 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

>[..]

AdaCore's GNAT GPL seems to include a
full Ravenscar RTS for Xilinx's zynq7000
ARM/FPGA SoC:
<https://www.xilinx.com/products/
boards-and-kits/device-family/
nav-zyng-7000.html>

One of those development kits might be
my next target platform, but successfully
configuring tools from two different
vendors for hardware/software co-design -
simulation, emulation, and cross-
compilation - on a third-party OS (Ubuntu
or RHEL) seems like a long way off.
Right now, configuring a Ravenscar/
SPARK development environment that
can produce a binary for the Nucleo-144
board that will flash an LED is the
[surprisingly challenging] goal :) [...]

Is it common for developers to create
their own run-time system for embedded
platforms? My inclination would be to
look for hardware based on 1) RTS
availability/quality and 2) toolkit
complexity/completeness (completeness
implies useful documentation). Given
that, which seems like an obvious thing to
do, I am surprised that AdaCore does not
have more apparent associations with
hardware vendors where dev-kits and
SBC products are promoted. | bought the
Nucleo-144 board because | thought there
was a BSP, RTS, and a tool-chain
configuration tutorial. That turned out to
be a bit of a mistake and generally a poor
choice. If AdaCore, or some other
enterprising entrepreneur, offered well-
developed BSP, RTS, tool-chain
configuration and programming tutorials
for several MCU dev-kits and SBC
(single board computer) products, that
would make the choice easy and actually
enable people to get started with the
technology in a reasonable way. It seems
S0 bizarre to me that this isn't a front-page
item for AdaCore. | guess there are
hidden obstacles in their business model
and the way the incentives are arranged in
their social organization. | suppose it
could have something to do with
European culture. In France, does
pedagogy have the demeanour of a wood-
chipper (e.g., is it based in punishment,
toil, and obscurity)? <smirk>

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Fri, 25 May 2018 10:50:07 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> |s it common for developers to create
their own run-time system for
embedded platforms? [...]

Not common, no. But RTS availability
(esp. SPARK RTS) has to start
somewhere, and for the MSP430 | didn't
really develop one, just adapt from AVR-
Ada.

With remarkably little feedback on that
project, | admit I've put remarkably little
effort into pushing it further. But I want it
for my own purposes, the watch is just a
pretty by-product.

>[...] I am surprised that AdaCore does
not have more apparent associations
with hardware vendors where dev-kits
and SBC products are promoted. [...]

Not AdaCore ... there isn't much hobbyist
money for them, given their business
model. They do publicise occasional
hobby-level projects like LEGO
Mindstorms and Certyflie, but | don't see
them making money off it.

Meanwhile we have to support each other,
perhaps your work on Nucleo can feed
back into Simon's RTS and expand its
supported platforms.

From: Adam Jensen <hanzer@riseup.net>

Date: Sat, 26 May 2018 05:06:40 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

>..]

> Not AdaCore ... there isn't much
hobbyist money for them, given their
business model. They do publicise
occasional hobby-level projects like
LEGO Mindstorms and Certyflie, but |
don't see them making money off it.

They have the "Make with Ada"
competition:
<https://www.makewithada.org/>

And the AdaCore University:
<http://university.adacore.com/>

If there is not a large vibrant community
of people who understand and use the
technology it will fade and collapse. It
seems like maybe they recognize this but
it doesn't seem like they know what to do.
(Only an idiot would have advertisers
involved in technical communication).
C'est la vie.

> Meanwhile we have to support each
other, perhaps your work on Nucleo
can feed back into Simon's RTS and
expand its supported platforms.

The Nucleo-144 board was selected as a
gentle starter kit to develop some
confidence and familiarity with the tool-
chain and the work-flow. It was a total
failure in this role. However, | have been
keeping notes and at some point | might
create a tutorial for Ada/SPARK
development on Ubuntu x86_64 targeting
the ARM MCU on a Nucleo-144 board.
After that, I will probably move to a

Ada in Context

platform with more resources. Eventually,
I need a processor coupled with an FPGA
- the FPGA is where most of the hard
real-time activity (traction with physics)
should take place, IMO.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Sat, 26 May 2018 23:58:17 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

> Super cool. Are your project's
documents posted/hosted anywhere for
others to view and use?

https://sourceforge.net/projects/
msp430ada/

It's somewhat stuck in the past, using
Peter Bigot's rather nice MSP430
backend, because gcc's own MSP430
backend built into newer versions have a
considerably poorer code generator (last
time | looked a couple of years ago).

Revisiting it is on my to-do list, hopefully
it has improved.

> [“Make with Ada” and AdaCore
University]

Both good forms of publicity, though |
wonder to what extent they manage to
bring in new people as opposed to
reaching to the converted.

[-]

From: Adam Jensen <hanzer@riseup.net>

Date: Fri, 25 May 2018 03:29:59 -0000

Subject: Re: How to configure GNAT GPL
on x86-64 Linux for ARM ELF
development

Newsgroups: comp.lang.ada

[-]

> | think that the reason why the tutorial
works and your attempt doesn't is that
the tutorial was developed on a
Raspberry Pi, which is already an
ARM-based machine, so the native
compiler actually has a runtime (i.e.
system.ads etc etc) visible to it.

This is so very relevant yet the tutorial
seems rather vague [to me] on this point.
It should be explicit, in bold, in a
highlighted box on the front page, IMO.
Thanks again for pointing that out. Even
on a second reading, it isn't clear [to me]
that using a Raspberry Pi as a software
development platform is the environment
of the tutorial.

<http://www.inspirel.com/articles/
Ada_On_Cortex_Documentation_And
_Tools.html>

Multiple Iterators for a Type

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 25 May 2018 09:49:46 -0700

Subject: Multiple iterators for a type

Newsgroups: comp.lang.ada

Volume 39, Number 3, September 2018

Ada User Journal

Ada in Context

I want to have a type which is an array of
8 bit values, | want the default iterator to
be the normal array loop.

But then | want to add more iterators
which return different types but
constructed from the array, i.e. a 32-bit
value and a sub-array.

1. Can this be done on the base type or do
I need to create new types from the base
type?

2. if 1. can be done, do these iterators all
need to be one package or can | put them
in child packages?

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 25 May 2018 21:50:08 +0200

Subject: Re: Multiple iterators for a type

Newsgroups: comp.lang.ada

> [...] Can this be done on the base type
[..]?

It can be done on the base type.

>[...] or can | put them in child packages?

They can be in child packages. Or even
locally defined in the subprogram where
you use them.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 25 May 2018 16:50:07 -0500

Subject: Re: Multiple iterators for a type

Newsgroups: comp.lang.ada

>[..]

There can only be one "of" iterator, and
it's built-in for array types. To replace the
"of" iterator you need different private
types (which means of course that they
can't directly be used as arrays, either,
although you can emulate that). Why
you'd want to go through that escapes me.

You can explicitly use alternate iterators
using the "in" syntax. After all, any
iterator object can be iterated (duh!), and
you can create as many different ones of
those as you want/need.

The "of" iterator is just a convenience,
and | think the language would have been
just fine without it. Ignore its existence
and you'll be just fine and can have all of
the iterators you ever could need.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 26 May 2018 04:57:45 +0100

Subject: Re: Multiple iterators for a type

Newsgroups: comp.lang.ada

>[.]

I’m attempting to implement a Unicode
string using UTF-8, so | want the basic
iterator over octets, then the next will
iterate over the octets and generate code
points, then another will be graphéme
clusters.

From: Jeremiah Breeden
<jhb.chat@gmail.com>

Date: Fri, 25 May 2018 21:44:16 -0700

Subject: Re: Multiple iterators for a type

Newsgroups: comp.lang.ada

>[.]

When I did multiple iterators | ended up
making a package for it, which I later
adapted just for fun to provide iteration of
types in generics. The steps | ended up
doing were:

1. Create my Cursor type and Has
Element

2. Create a set of functions returning
reference types, but use a package to do
it so I could pass them into another
generic

3. Instantiate Iterator_Interfaces for my
cursor

4. Implement my iterator

5. Pass it into a package that created an
iterable wrapper

Technically if you just want "in" iteration,
you stop at #4, but I like the "of" version
so that is why | made a package for step
5.

In the end | was able to get something
like:

for E of Iterable (Container_Object) loop
E.Do_Things;
end loop;

where Iterable is a function from my
generic package that returns an iterable
version of Container object. It was handy
for generics and having multiple iterators,
though it comes at a performance cost
since it uses a layer on top of the
container.

Package for making reference types:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/

bullfrog-access_types-references.ads

Package for making "of" iterable
wrappers:
https://github.com/jeremiahbreeden
/bullfrog/blob/master/src/
bullfrog-containers-iterable_wrappers.ads

Package with some predefined wrappers
of the standard containers to my iterable
wrappers:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/
bullfrog-containers-
predefined_iterable_wrappers.ads

Some testing of the predefined wrappers
that | made:
https://github.com/jeremiahbreeden/
bullfrog/blob/master/src/tests
[test_generic_iteration.adb

Literals for Private Types

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 14:46:08 -0500

Subject: Re: Strings with discriminated
records

Newsgroups: comp.lang.ada

>[.]

153

See Al12-0249-1. This hasn't been
discussed at a meeting yet, so it probably
will change some, but Tucker suggests
aspects "Integer_Literal”, "Real_Literal",
"Null_Literal", and "String_Literal".
These represent functions that can be
specified:

type Message (discriminants or not) is ...

end record
with String_Literal => Make_Message;

where Make_Message is something like:

function Make_Message (Lit : in
Wide_Wide_String) return Message;

with the obvious semantics when a string
literal is encountered.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 14:48:43 -0500

Subject: Re: Strings with discriminated
records

Newsgroups: comp.lang.ada

BTW, the reason that I said "it might
change" is that there are some issues with
what to do with private types where the
full type "naturally™ has the same kind of
literal. 1 don't think that is handled quite
right yet, and it's relatively important to
get right (user-defined aggregates have a
similar, even worse problem).

[See also <http://www.ada-auth.org/
cgi-bin/cvsweb.cgi/ail2s/ail2-0249-
1.txt?rev=1.2&raw=N>. —sparre]

Use Clauses

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 30 May 2018 15:09:54 -0500

Subject: Re: Strings with discriminated
records

Newsgroups: comp.lang.ada

> [...] What's the problem?

(A) The person | was responding to was
upset that they had to write the fully
qualified name in this case, and
practically, they're right. (Tucker has
complained about this multiple times.)

(B) But package use clauses make things
visible that are not overloadable (like
objects), so they tend to be a substantial
maintenance hazard -- adding something
to a package can make client code using
use clauses illegal because of conflicts.
Adding unrelated stuff should *never*
make any client illegal (changes,
obviously are different).

If Ada had made objects/exceptions
overloadable, this problem would be
much less severe. But it didn't, and
changing that now would be difficult to
do without lots of subtle incompatibilities.

Use type/use all type (and better still,
prefix calls) mostly avoid this problem by
only operating on overloadable things.
You still can get conflicts, but only when
there are design issues (having multiple
operations with the same name and profile

Ada User Journal

Volume 39, Number 3, September 2018

154

means either there is unnecessary
duplication [two routines doing the same
thing] or that there is routines doing
different things with the same name
(yikes!).

In a best case world, a rename conflicting
with the original routine or another
rename of it would be ignored in all use
clauses, along with overloading of
objects/exceptions. That would reduce
conflicts to a handful of cases. (If
overloading of generics could be figured
out, that would be even better.) But that
has to wait for Ada++.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 31 May 2018 06:19:28 +0200

Subject: Re: Strings with discriminated
records

Newsgroups: comp.lang.ada

> [...] package use clauses make things
visible that are not overloadable [...]
tend to be a substantial maintenance
hazard [...]

Here | don't agree. OF COURSE,
changing a specification can make client
code illegal, with or without use clauses.
And I would not call making code illegal
a "maintenance hazard"; on the contrary, a
maintenance hazard is when a change
does not make code illegal, but acts
differently. We know how hard Tuck
fought in Ada 95 to eliminate the
Beaujolais effect...

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 31 May 2018 17:18:37 -0500

Subject: Re: Strings with discriminated
records

Newsgroups: comp.lang.ada

>[.]

Whenever large amounts of code depend
on some package, causing unusual
illegalities in working code just because
of the addition of a new object/exception
is a major problem. Consider something
like Claw: we have to avoid making
changes to the specs -- even ones that are
clearly good ideas -- in order to avoid
breaking user code. Similarly, | have to
document *every single* change in a
language-defined package as an
incompatibility -- even though only
people overusing use clauses have a
possibility of such an incompatibility.
And this is a real problem; it bites me
often in Janus/Ada (which itself overuses
use clauses) -- the main reason that |
hardly ever use them in new code.

Ada's "solution™ of making things illegal
is better than silent changes (although
those can happen, too, especially in child
units), but the best situation is one where
adding new
subprograms/objects/exceptions don't
have any effect at all on existing code (in
the absence of dubious design - that is
multiple different things with the same
name and profile). Anything else makes it

hard to enhance libraries cleanly (you end
up with unnecessary child packages - like
"Ada.Directories.Hierarchical_File_
Names" - to avoid the incompatibilities -
and that itself is just another kind of pain.

Execute External Program

From: John Smith
<yoursurrogategod@gmail.com>

Date: Sun, 3 Jun 2018 20:17:31 -0700

Subject: Trying to execute a command from
inside of Ada

Newsgroups: comp.lang.ada

I found the following example:
http://rosettacode.org/wiki/Execute_a_sys
tem_command#Ada

And this is how | tried to adapt it to
Linux:

with Interfaces.C;

with Ada.Text_lO; use Ada.Text_IO;
with GNAT.OS_Lib; use GNAT.OS_Lib;

procedure Sys_Command is
Result : Integer;
Arguments : Argument_List :=
(1 => new String'("bash"),
2 => new String'("ls -I ~"));
begin
Spawn (Program_Name => "bash",
Args => Arguments,
Output_File_Descriptor => Standout,
Return_Code => Result);
end Sys_Command;

The problem is that 'Is -1 ~" is not executed
correctly. I don't see any output at all.
What am | doing wrong?

From: Yuta Tomino <aghia0O5@gmail.com>

Date: Sun, 3 Jun 2018 21:42:09 -0700

Subject: Re: Trying to execute a command
from inside of Ada

Newsgroups: comp.lang.ada

>1..]
"-¢" switch is needed for bash to pass the
subcommand. Try to compare them in
your interactive shell.
$ bash "lIs -1 ~"
$ bash -c “Is -1 ~*
From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>
Date: Mon, 04 Jun 2018 08:44:10 +0200
Subject: Re: Trying to execute a command
from inside of Ada
Newsgroups: comp.lang.ada
>[.]
Have you tried to run this on your
command line?
bash "Is -l ~"
That's basically what you ask your
program to do.
I would:
1) Avoid involving Bash in this.

2) Remember to pass each argument
separately.

Ada in Context

And | might additionally:

3) Expand "~" myself, as "Is" doesn't
know how to do that (but "system()" or
"/bin/sh™ might).

Generic Formal Type with
‘Image Attribute

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Wed, 6 Jun 2018 15:03:22 +0200

Subject: Generic formal type with ‘Image

Newsgroups: comp.lang.ada

I'm pretty sure the answer is "no", but just
in case:

Is there a formal for a generic that serves
for any type that has a predefined 'Image?

The purpose is to avoid:

generic
type Printable is ...
-- What should go here?
with function Image (P : Printable) return
String is <>;
package

and then have to pass the 'Image attribute
as the Image function in all instantiations.

The closest thing I can think of is (<>) but
that won't do for floating point types.

I understand this is an unusually narrow
case (I need a generic for many numeric
types, both discrete and floating, and this
would save me some typing -- that I have
already spent here anyway.)

With these issues | feel a kind of
overlap/missed connection between
attributes and interfaces.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Jun 2018 15:34:02 -0500

Subject: Re: Generic formal type with
‘Image

Newsgroups: comp.lang.ada

-]

Ada 2020 is likely to allow 'Image on all
types, and also to allow redefining it
similarly to the way one redefines
streaming. | say likely because that's still
being worked on, and with the deadlines
rapidly approaching, I can't guarantee
anything will get finished and thus
included unless it is already finished.

Parsing JSON with
GNATCOLL

From: eduardsapotski@gmail.com
Date: Thu, 7 Jun 2018 22:52:54 -0700
Subject: GNATCOLL JSON Parsing
Newsgroups: comp.lang.ada

I try understand parsing JSON in Ada.
For example:

Have web-api that gives simple JSON:
http://api.exmo.com/vl/trades/?pair=BTC
_USD&lIimit=10

I need to save this data to database.

Volume 39, Number 3, September 2018

Ada User Journal

Ada in Context

Created type:

type Money is delta 0.00000001 range 0.0
..9.999 999 999.9;

type UTC_Date is range 1_500_000_000
.. 3_000_000_000;

type Trade is record

Trade_Id : Integer;
Pair : Unbounded_String;
Trade_Type : Unbounded_String;
Price : Money;
Quantity : Money;
Amount : Money;
Date : UTC_Date;
Saved : Boolean;
end record;

Created collection:

package Vector_Trades is new
Ada.Containers.Vectors(Natural, Trade);

Trades : Vector_Trades.Vector;

Receive data:

JSON : Unbounded_String;

JSON := To_Unbounded_String(
AWS.Response.Message_Body
(AWS.Client.Get (URL =>
"http://api.exmo.com/
vl/trades/?pair=BTC_USD
&limit=10")));

What to do next? How to get list of
objects from the JSON-text?

How to save data to database already
understood.

From: Bjorn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 8 Jun 2018 11:35:19 +0200

Subject: Re: GNATCOLL JSON Parsing

Newsgroups: comp.lang.ada

>[.]
Something like (not tested):

declare
use GNATCOLL.JSON;
Current_Item, Reply : JSON_Value :=
Create;
BTC_Array : JSON_Array :=
Empty_Array;
begin
Reply := Read (Strm =>
AWS.Response.Message_Body
(AWS_Reply),

if Reply.Has_Field ("BTC_USD") then
BTC_Array := Reply.Get("BTC_USD");
if Length (BTC_Array) > 0 then
forlin 1 .. Length (BTC_Array) loop
Current_ltem := Get (BTC_Array, |);
declare
Trade_ID : Integer := 0;
begin
if Current_Item.Has_Field
("tradeid") then
Trade_ID := Current_ltem.Get
("tradeid");

end if;
end;
end loop;
end if;

end if;
end;

From: Per Sandberg
<per.s.sandberg@bahnhof.se>
Date: Fri, 8 Jun 2018 05:00:27 -0700
Subject: Re: GNATCOLL JSON Parsing
Newsgroups: comp.lang.ada

>..]

You might find the library
<https://github.com/persan/gnatcoll-json>
useful. It contains JSON supPort for most
Ada.Containers.* packages and some
examples.

Forcing Explicit
Initialisation

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Thu, 14 Jun 2018 17:37:26 +0200

Subject: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

I think I have read somewhere that types
with unknown constraints are a good way
of ensuring you (or your users) don't end
with uninitialized values:

types Whatever (<>) is [limited] private;
function Create return Whatever;

This seems nice at first sight but when
these types have any likelihood of ending
as members of another type you will hit
the "unconstrained member" problem.

A workaround then is to use a
Indefinite_Holder, but that's an imposition
on your clients (ugly). If your type is
furthermore limited, then you must use
pointers and consider providing
controlledness and deallocation in the
enclosing type (uglier).

Right now I'm on the point of a new
design where | have many interrelated
types that require initialization calls (it's a
C binding). And, as always, I'm unsure of
the way to go, or if I'm missing another
technique without shortcomings. Your
thoughts if you have any on this issue are
much appreciated.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 14 Jun 2018 18:19:57 +0200

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

>[.]

As well as problems with publicly derived
types.

[-]

In large projects instead of holder I use a
reference-counted controlled handle. The
target's type declaration goes into private

155

packages. The handles go to the public
interface packages. It is tedious, but it the
only working method if you want to
enforce construction and hide
implementation.

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Thu, 14 Jun 2018 09:58:12 -0700

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

One approach would be to use
coextensions, assuming you are aware of
all that entails, e.g.:

type Inner (<>) is private;
function Create_Inner return Inner;

type Outer (<>) is private;
function Create_Outer return Outer;

private
type Outer (x : access Inner) is null
record;

function Create_Outer return Quter is
begin
return Outer (X => new
Inner'(Create_lInner));
end Create;

And, assuming the compiler follows the
advice (and is bug free :/) everything
should work itself out safely and neatly.
Though a portable way to do this would
be nice.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 14 Jun 2018 19:53:07 +0200

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

> [...] types with unknown constraints are
a good way of ensuring you (or your
users) don't end with uninitialized
values [...]

It's one way. There are others that might
be better. Unknown discriminants are
more for generic formal types, to show
that the generic accepts indefinite actual

types.

One way to deal with this is to make the
full type a record with reasonable defaults
for all the components. This works for all
versions of the language.

Another is to make the type a descendant
of [Limited_}Controlled and override
Initialize. This works for Ada 95 and
later.

Another way is to have

function Initialized (Thing : Whatever)
return Boolean;

that returns True if its parameter has been
initialized. Have a Dynamic_Predicate on
Whatever that Initialized returns True.
Have a postcondition on your
New_Whatever function that its return
value is Initialized. Make the full type a
record with an Initialized component

Ada User Journal

Volume 39, Number 3, September 2018

156

default initialized to False. This only
works for Ada 2012.

Another is to leave off the predicate, and
instead give all operations on the type the
precondition that the value is Initialized.
This only works for Ada 2012, but it can
be emulated in any version of Ada with
manual checks of the precondition.

>[.]

After having made an effort to make the
type indefinite, you should not be
surprised that it's an indefinite type.

Part of design is to try to anticipate all
reasonable uses for a type, and choose an
approach that works for them all. If this is
a reasonable use of the type, then
unknown discriminants is not a suitable
approach.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 15 Jun 2018 07:13:38 +0200

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

> [...] One way to deal with this is to
make the full type a record with
reasonable defaults for all the
components. [...]

Even better, the default can be a raise
expression (or a function that raises an
exception for pre-2012), so no
uninitialized object can be created. This is
a run-time check, but a decent compiler
would warn you at compile time.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 08 Jul 2018 15:53:44 +0200

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

> Even better, the default can be a raise
expression [...]

This does not give a warning at compile
time with FSF GNAT 8 (Debian/sid), nor
with GNAT CE 2018, but you get the
correct run-time error with both
compilers:

private with Ada.Strings.Unbounded;

package Initialisation_Required is
type Instance is private;
function Create (Name : in String)
return Instance;
private
type Instance isrecord
Name : Ada.Strings.Unbounded.
Unbounded_String := raise
Constraint_Error
with "Uninitialised object.";
end record;
end Initialisation_Required;

package body Initialisation_Required is
function Create (Name : in String)
return Instance is
begin
return R : Instance do

R.Name := Ada.Strings.Unbounded.
To_Unbounded_String (Name);
end return;
end Create;

end Initialisation_Required;

with Initialisation_Required,;
procedure Demo is
O : Initialisation_Required.Instance :=
Initialisation_Required.
Create (Name => "Hello");
begin
O := Initialisation_Required.Create
(Name => "Hello");
end Demo;

Another problem with this is that you
can't wait until you leave your internal
constructor function, before the
initialisation has to happen.

With the example above, you get your
exception already at "return R : Instance
do", which isn't what we want. (Easy to
work around, but something you should
be aware of.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 14 Jun 2018 16:28:40 -0500

Subject: Re: Unknown constraints and type
composition

Newsgroups: comp.lang.ada

>1..]

If there was a technique without
shortcomings, we wouldn't need any other
options!!

The other option, of course, is to ensure
that the default initialized object is
"meaningful™ in some sense. Most of my
objects default initialize to a state that
causes most operations on them to raise
an exception ("Not_Valid_Error in
Claw). I don't think it is reasonable to try
to make objects valid 100% of the time,
that forces all of your operations into the
straitjacket of Ada scoping.

That of course has the downside of
making the checks dynamic. In the case of
Claw, there's no choice anyway (a
Window object can disappear due to an
action that comes from the program's user
[clicking on the close button], not the
program's code, so nothing really can be
determined statically). | suspect that is
somewhat true of most real systems.

Subpools

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Thu, 14 Jun 2018 06:48:26 -0700

Subject: Comprehending subpools

Newsgroups: comp.lang.ada

I've been trying for what I guess is six
years now to figure out subpools, and |
just can't seem to make heads or tails of it.
Yes, | understand it inasmuch as it means
you can deallocate multiple objects at
once with proper finalization, but it seems

Ada in Context

like a hell of a lot of work went into it,
with multiple Al's, hundreds of
comments, and what has to be thousands
of man-hours for a feature that seems
niche, at best. The Al's are filled with big
talk and grand plans (the phrase "portable
garbage collecting pool" was uttered), and
even the "Controlled"” pragma was marked
as being supplanted by subpools, but what
made it into the language seems, well, not
much better than what was there already.
But it wouldn't be the first Ada feature
that was too complex for programmers to
understand, so please point out where |
have gone off the rails.

The rationale says "this is far safer and
often cheaper than trying to associate
lifetimes with individual objects"”. But is it
really?

Deallocating subpools is still just as
unchecked as deallocating an individual
objects, and it's not like you get partial
credit for dangling references.
Deallocating a subpool with a reference
into it still hanging around is just as
unsafe as regular
Unchecked_Deallocation, so you still
have the same old problem of either
limiting the scope, or reference counting
everything. And practically, if you are
going to reference count it, it's going to be
some generic, reusable package that either
works right for everything or nothing at
all, which is exactly as safe/unsafe as it
was before.

Moreover, reference counting in a world
of subpools is even harder, because not
only do you have to worry about the
objects in the subpool, but the subpool
handle itself. So it becomes a *more*
complex task of ensuring that a) all the
references into the subpool are gone and
B) all references to the subpool itself are
gone. The reference counted values would
need some mechanism to know which
subpool they came from, which probably
means the subpool handle, which now
also has to be reference counted, so you
have shared pointers inside of shared
pointers, which i would classify as "at
best equally complex and error prone"
instead of "far safer". You could argue
you might save some bytes by only
having a single total reference count
instead of many, but that is probably
offset by needing to save the subpool
reference anyway. And of course this
means reference counted subpool values
would be different than normal reference
counted values, which means a THIRD
type of incompatible pointer running
around; i.e. you still can't have a set of
references that can hold 'regular’
(accessibility-checked) access values,
'standard' reference counted values, and
subpool counted values.

Alright, so maybe this is intended for the
case where you can control the entire
scope, and not have to worry about
passing them around. But in those cases,

Volume 39, Number 3, September 2018

Ada User Journal

Ada in Context

can't you just declare a new access type
and use 'Storage_Size (or a normal
storage pool) to give you exactly that?
The only reason to use a subpool is when
the type has to be declared at a higher
scope, which is presumably so you can
pass that type around (and save it off
somewhere), which demands some sort of
reference counting.

So then perhaps it's "often cheaper™? It
will certainly be faster to deallocate a big
chunk than a bunch of little chunks, but
all premature optimization platitudes
aside, I can honestly not think of a time
when the speed of deallocations
concerned me in the least, as either
programmer or user. Normally this
happens when the program (or significant
portion of it) is over, at which point who
cares how long some thread runs in the
background cleaning up storage? Even the
given example of a retail shopping web
site seems forced; who worries about how
long a web server takes to deallocate old
shopping cart data after the user has
closed his browser? If anything that
example demonstrates the need for some
form of automated garbage collection, not
optimizing the manual method.

Moreover, even in a supposed use-case
where speed DOES matter, the whole
point of this change was to do it in a way
that allows for finalization of the objects;
otherwise the pre-existing Mark/Release
pool was sufficient. But if you need a
subpool because all these objects are
going to have complex finalization, isn't
that almost certainly going to be the
bottleneck? The runtime still has to walk
through the list of objects, one-by-one,
and run their big, slow, complex Finalize
procedures. So the idea that you can just
‘adjust a pointer' and be done with it really
doesn't hold water either.

So at the end of the day, | can't see how
much of any of this is better than what
was already there, and certainly not to the
extent it was worth the apparently
enormous amount of time spent,
especially when there are other things
begging for improvement. It seems like it
would have been much more efficient to
just make the mark/release pool a
standard library package instead of an
example, and add a rule that saying that
the implementation needs to finalize the
objects within.

I have to assume | just haven't had that "a-
ha!" moment that readjusts my old way of
thinking, so does someone actually have a
real, serious, concrete example of
something using subpools that warrants
the time and expense that this took? I'm
all for revising the memory management
facilities in Ada (I long for the day when
you can use raw access values from a
reference-counting pool, a mark/sweep
pool, and those generated from 'Access
interchangeably), but this just doesn't
seem to be it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 14 Jun 2018 16:21:59 -0500

Subject: Re: Comprehending subpools

Newsgroups: comp.lang.ada

>[.]

The use case is situations when you have
separable data structures that it only
makes sense to treat as a whole. Think of
an expression tree in a compiler. There
are a lot of inter-structure links, so a
reference counting scheme for every
pointer doesn't work. Rather, you can use
a subpool and only reference count the
references to the entire tree. When that
goes to zero, you use the subpool to
clobber the entire structure. Alternatively,
you might have weak references to the
tree, that automatically get nulled when
the tree is clobbered.

You can't use separate access types in
cases like this, since there's lots of shared
code that needs to take pointers to these
trees. And you want to clobber the whole
structure at once, as that reduces the
possibility of dangling pointers.

Tucker originally had various weak and
strong references with the subpool
proposal, but those were massively
complex and can easily be constructed out
of existing Ada concepts. So the subpool
is a tool, but it's expected to be used with
programmer constructed strong and weak
references - by itself, it only really
provides one thing: the ability to finalize a
group of objects together. (The one thing
that you can't do without it.)

It *is* a niche need; personally, | think
using tree containers to represent an
expression tree would be a better solution
to the problem given above. Those too
can have dangling pointers, but only if
you insist on an implementation that puts
performance above safety.
(Unfortunately, many users do exactly
that.) It's relatively easy to detect all
dangling cursors for the unbounded
containers (the requirement for the
packages to be Pure prevents such
detection for the bounded containers,
although the usual implementation of a
bounded container means that such
cursors still point at *something*, it's just
not what you expect).

In any case, subpools precedes the tree
containers, so that wasn't an option then.
For me, I'd try to avoid ever writing an
access type and use the containers instead
(you can get dangling detection for free,
and many operations -- like iteration and
lookup -- never need a cursor in the first
place).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 15 Jun 2018 09:15:00 +0200
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

>[.]

157

I think the questions rather were:

1. What is so special about arena or a
mark-and-release pool that it cannot be
handled by a user-defined pool in Ada
95?

2. Arena is inherently unsafe whatever
implementation used. So all talk about
"safety" does not make much sense.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 15 Jun 2018 17:15:21 -0500

Subject: Re: Comprehending subpools

Newsgroups: comp.lang.ada

> 1. What is so special about arena or a
mark-and-release pool that it cannot be
handled by a user-defined pool in Ada
95?

No pool that does block deallocation (not
using Unchecked_Deallocation) can work
properly with controlled objects. For
almost all implementations, attempting to
do that with controlled objects would
cause the program to instantly crash
because of an attempt to follow pointers
that no longer exist.

Since virtually all memory management
schemes in Ada use controlled types or

some language-defined equivalent, that

essentially means that you would be so

limited in what you can put into such a

pool that it is close to useless.

> 2. Arena is inherently unsafe whatever
implementation used. So all talk about
"safety" does not make much sense.

"Safety" in this case is related to properly
handling controlled types. With that, one
can construct properly working strong and
weak references and other safe memory
management structures that will work on
essentially any Ada objects. Without it,
you have no chance of any safe memory
management.

The basic idea is that one manages the
"strong" references to an arena (such as
the reference to the root of a tree), and
when they are all gone, one can safety
destroy the arena. The weak references
aren't managed for that purpose, but don't
become erroneous when the arena is
destroyed, but rather just get (effectively)
nulled out.

One could implement the containers this
way, such that when a container is
destroyed, that the entire arena of nodes is
immediately reclaimed. (There's no legal
references into the container at that point.)

In any case, a subpool by itself doesn't
provide any safety; it's just a building
block to be used to provide such safety.
All of the other things needed to build
such abstractions already existed in Ada,
the only thing missing was an ability to
finalize all of the objects in an arena
(subpool) at once.

Draw your own conclusions as to how
valuable (or not) that is.

Ada User Journal

Volume 39, Number 3, September 2018

158

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sat, 16 Jun 2018 09:36:19 +0200
Subject: Re: Comprehending subpools
Newsgroups: comp.lang.ada

>[.]

Right, it is so special case that | join OP
wondering why this was paid any
attention at all. Normally the schema is
reverse, the objects must go when the
arena goes, if any safety could be added,
then a linked list of objects to finalize
[prematurely, BTW] as it is done in other
cases.

From: Simon Belmont
<shelmont700@gmail.com>

Date: Mon, 18 Jun 2018 17:32:23 -0700

Subject: Re: Comprehending subpools

Newsgroups: comp.lang.ada

I guess it's just a case of me reading too
much into things. The rationale declares
subpools "a major new facility", but | just
couldn't (and perhaps still can't) see a
niche feature as being worth all the time
and trouble. When people say "far safer" i
think of code that doesn't have to be
prefixed with Unchecked_* at all, not just
"you have to call it less".

And sure, finalization is of course
important, but subpools seem almost
specifically engineered to solve one
problem that one person had writing one
type of program, and not a general-
purpose building block (which happily
most features in Ada are). Which is fine
for small features that are relatively easy,
but just judging from the Al text,
subpools seems to be the biggest change
to 2012 second only to contracts, and it
mostly seems, well, wasted. It doesn't
appear the default pool has to support
them (?), so step one to using a subpool is
to go and implement a pool-with-subpools
and hardcode your program to use it, and
that's a high barrier to entry even when it's
warranted. And when there are so many
other things developers on CLA are
always clamoring for
(<cough>constructors<cough>), it all
seems like an odd way to focus energies.
Not to be flippant, but my kingdom for a
do loop...and 'do' is already a reserved
word!

I'd rather pull all the nonsense of
wrapping access values in controlled
types out of the client in the first place

and put it into the pool itself (a callback
passed to allocate or something?), instead
of just solving the problems piecemeal.
Having to use controlled types for
memory management is the problem
IMHO. Let code work with access values
directly and leave it to the pool they came
from to decide how and when to clean it
up.

I suppose | was just hoping for more. |
would, however, be interested to hear
examples of how other people have found
them useful in their own code (outside of
compiler ASTSs) to help foster my
imagination of what else can be done with
them.

Thank you again for the responses and
continued support.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 29 Jun 2018 14:57:08 -0500

Subject: Re: Comprehending subpools

Newsgroups: comp.lang.ada

> [...] Let code work with access values
directly and leave it to the pool they came
from to decide how and when to clean it
up.

That was my original idea for what
eventually became generalized references.
The problem being that you have to lie
about the specification of pools for that to
work (the "System.Address" parameters
become handles that you pass into a
dereferencer). And magic was required
for the call-back needed to tell the pool
when the dereference wasn't needed
anymore. Most readers couldn't wrap their
heads around either part of that.

Using a totally different specification for
a new kind of pool wasn't appealing, as it
would mean having to support multiple
ways of doing the same thing.

]

P.S. The original driving force for
subpools came from Tucker Taft and Bob
Duff, who had used a system like this
when implementing the tool now known
as CodePeer. The original proposal was
ten times more complicated, containing
strong and weak references, and
automated deallocation mechanisms. All
of these can easily be constructed with the
building blocks available, and trying to
support all of that would have taken a lot
more effort.

Ada in Context

I've never seen much value for arena
memory management myself, but I prefer
to hide access types as much as possible
with almost no visible surface. In that
case, all of the memory management
belongs to the objects, and that tends to
require separate management for each
object.

From: Edward R. Fish
<onewingedshark@gmail.com>
Date: Fri, 29 Jun 2018 15:42:31 -0700
Subject: Re: Comprehending subpools

Newsgroups: comp.lang.ada

>[.]

Hm, maybe they could be useful for some
sort of distributed system? | mean if
you're considering a shared memory-
space (like, say, IEEE 1394) then
disconnection of a device and reclaiming
the address-values ala arena management
seem to be fairly analogous.

Generics

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 24 Jun 2018 10:19:32 +0100

Subject: Re: Ada Successor Language

Newsgroups: comp.lang.ada

>[.]
You really need to understand the rules:
"assume the best" in generic
specifications, "assume the worse" in
generic bodies.

I.e. a generic spec is legal if there is at
least one legal instantiation. This is
because the user is assumed to see the
specification, and therefore understand
why some instantiation is rejected.

A generic body is illegal if there is at least
one illegal instantiation. This is because
the user is not assumed to see the body of
a generic.

Hint: a generic can be made legal by
moving some declarations from the body
to the specification (even into the private
part).

Volume 39, Number 3, September 2018

Ada User Journal

159

Conference Calendar

Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked e is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with © denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list. html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLS, etc. and are updated regularly.

2018

October 02-05 37th IEEE International Symposium on Reliable Distributed Systems (SRDS'2018), Salvador,
Bahia, Brazil. Topics include: dependability, security and privacy of distributed systems; methods and
tools for the design, implementation, verification, validation and benchmarking of dependable and
secure applications, middleware and operating systems; etc.

October 04-05 8th Workshop on Model-Based Design of Cyber Physical Systems (CyPhy'2018), Torino, Italy. In
conjunction with ESWEEK 2018.

© October 10-12 26th International Conference on Real-Time Networks and Systems (RTNS'2018), Poitiers, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), hypervisors), formal specification and verification, real-time distributed
systems (fault tolerance, task/messages allocation, ...), etc.

October 11-12 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2018), Oulu, Finland. Topics include: the strengths and weaknesses of software engineering
technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and
mixed studies; case studies, action research, and field studies; replication of empirical studies and
families of studies; mining software engineering repositories; empirically-based decision making;
assessing the benefits/costs associated with using certain development technologies; industrial
experience, software project experience, and knowledge management; software technology transfer to
industry; etc.

October 15-18 29th IEEE International Symposium on Software Reliability Engineering (ISSRE'2018), Memphis,
Tennessee, USA. Topics include: innovative techniques and tools for assessing, predicting, and
improving the reliability, safety, and security of software products; reliability, availability and safety of
software systems; validation and verification; faults, errors, failures, defects, bugs; software quality and
productivity; software security; dependability, survivability, fault tolerance and resilience of software
systems; systems (hardware + software) reliability engineering; open source software reliability
engineering; supporting tools and automation; industry best practices; virtualization and software
reliability; empirical studies of any of the above topics; software standards; etc.

October 16-19 15th International Colloquium on Theoretical Aspects of Computing (ICTAC'2018), Stellenbosch,
South Africa. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical
systems; static analysis; software verification; software testing; model checking and automated theorem
proving; verified software, formalized programming theory; etc.

© November 04-09 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2018), Boston, Massachusetts, USA. Topics include: all aspects of software
construction, at the intersection of programming, languages, and software engineering. Events include:

Ada User Journal Volume 39, Number 3, September 2018

160 Conference Calendar

ACM SIGAda's HILT workshop (High Integrity Language Technology for Cybersecurity in Real-Time
and Safety-Critical Systems).

Nov 05-06 11th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2018). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and
variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc.

November 04-09 12th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2018), Orlando, Florida, USA.
Topics include: architecture and design; components, services, and middleware; debugging;
dependability, safety, and reliability; development tools and environments; distributed, parallel, and
concurrent software; education; embedded and real-time software; empirical software engineering;
formal methods, including languages, methods, and tools; model-driven software engineering; processes
and workflows; program analysis; program comprehension and visualization; refactoring; reverse
engineering; safety-critical systems; scientific computing; security and privacy; software economics and
metrics; software evolution and maintenance; software modularity; software product lines; software
reuse; testing; traceability; etc.

+ © Nov 05-06 ACM SIGAda's High Integrity Language Technology International Workshop on Languages and
Tools for Ensuring Cyber-Resilience in Critical Software-Intensive Systems (HILT'2018), Boston,
Massachusetts, USA. Co-located with SPLASH 2018. Organized by ACM SIGAda. Topics include:
language features that can be used to build security and/or safety into software-intensive systems;
extending contract-based programming to specifying security resistance and resilience properties as well
as safety and/or correctness properties; modeling and/or programming language features and analysis
techniques that aid in code analysis and verification and that increase the level of abstraction and
expressiveness; language features that support continuous requirements maturation to support evolving
needs, particularly in cyber-physical systems, while ensuring that security and safety properties are
preserved; etc.

November 10-13 18th International Conference on Runtime Verification (RV'2018), Limassol, Cyprus. Topics
include: monitoring and analysis of the runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission-critical systems, enterprise and
systems software, autonomous and reactive control systems, health management and diagnosis systems,
and system security and privacy.

November 26-30 21st Brazilian Symposium on Formal Methods (SBMF2018), Salvador-BA, Brazil. Topics include:
techniques and methodologies (such as model-driven engineering, development methodologies with
formal foundations, software evolution based on formal methods, ...); specification and modeling
languages (such as well-founded specification and design languages, formal aspects of popular
languages, code generation, formal methods of programming paradigms (such as objects, aspects, and
component), formal methods for real-time, hybrid, and safety-critical systems, ...); theoretical
foundations (such as models of concurrency, ...); verification and validation (such as abstraction,
modularization and refinement techniques, correctness by construction, model checking, static analysis,
formal techniques for software testing, software certification, ...); experience reports regarding teaching
formal methods; applications (such as experience reports on the use of formal methods, industrial case
studies, tool support).

November 28-30 19th International Conference on Product-Focused Software Process Improvement
(PROFES'2018), Wolfsburg, Germany. Topics include: experiences, ideas, innovations, as well as
concerns related to professional software development and process improvement driven by product and
service quality needs.

December 03-05 16th Asian Symposium on Programming Languages and Systems (APLAS'2018), Wellington, New
Zealand. Topics include: foundational and practical issues broadly spanning the areas of programming

Volume 39, Number 3, September 2018 Ada User Journal

Conference Calendar 161

December 04-07

December 10
© December 11-13

© December 11-14

December 12-14

languages and systems, such as semantics, design of languages and type systems, domain-specific
languages, compilers, interpreters, abstract machines, program analysis, verification, model-checking,
software security, concurrency and parallelism, tools and environments for programming and
implementation, future directions of programming, addressing rapid changes of underlying computing
platforms, etc.

25th Asia-Pacific Software Engineering Conference (APSEC'2018), Nara, Japan. Topics include:
agile methodologies, component-based software engineering, cyber-physical systems and Internet of
Things, debugging and fault localization, embedded real-time systems, formal methods, middleware,
model-driven and domain-specific engineering, open source development, parallel, distributed, and
concurrent systems, programming languages and systems, refactoring, reverse engineering, security,
reliability, and privacy, software architecture, modelling and design, software comprehension, software
engineering education, software engineering tools and environments, software maintenance and
evolution, software product-line engineering, software reuse, software repository mining, testing,
verification, and validation, etc. Deadline for submissions: October 1, 2018 (posters).

Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

24th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2018), Sentosa,
Singapore. Topics include: parallel and distributed applications and algorithms, middleware, security
and privacy, dependable and trustworthy computing and systems, cyber-physical systems, embedded
systems, real-time systems, multi-core and multithreaded architectures, scheduling, etc.

39th IEEE Real-Time Systems Symposium (RTSS'2018), Nashville, Tennesse, USA. Topics include:
all aspects of real-time systems, including theory, design, analysis, implementation, evaluation, and
experience.

23rd International Conference on Engineering of Complex Computer Systems (ICECCS'2018),
Melbourne, Australia. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, software architecture, design
by contract, agile methods, safety-critical & fault-tolerant architectures, real-time and embedded
systems, cyber-physical systems and Internet of Things (10T), tools and tool integration, industrial case
studies, etc.

2019
January 08-11

January 15-18

March 18-21

March 25-28

March 25-29

31st Conference on Software Engineering Education and Training (CSEET'2019), Grand Wailea,
Maui, USA. Topics include: curriculum development; empirical studies; personal or institutional
experience; team development; software assurance, quality, and reliability education; methodological
aspects of software engineering education; global and distributed software development; open source in
education; cooperation between industry and academia; etc.

11th Software Quality Days Conference (SWQD'2019), Vienna, Austria. Topics include:
improvement of software development methods and processes; testing and quality assurance of software
and software-intensive systems; domain specific quality issues such as embedded, medical, automotive
systems; novel trends in software quality; etc.

25th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2019), Utrecht, the Netherlands. Deadline for submissions: October 2, 2018 (papers).

14th European Conference on Computer Systems (EuroSys'2019), Dresden, Germany. Topics
include: all areas of computer systems research; such as distributed systems; language support and
runtime systems; systems security and privacy; dependable systems; parallelism, concurrency, and
multicore systems; real-time, embedded, and cyber-physical systems; tracing, analysis, verification, and
transformation of systems; etc. Deadline for submissions: October 1, 2018 (full papers), October 10,
2018 (workshops), January 23, 2019 (posters).

IEEE International Conference on Software Architecture (ICSA'2019), Hamburg, Germany. Topics
include: model driven engineering for continuous architecting; component based software engineering
and architecture design; re-factoring and evolving architecture design decisions and solutions;
architecture frameworks and architecture description languages; preserving architecture quality
throughout the system lifetime; software architecture for legacy systems and systems integration;
architecting families of products; software architects roles and responsibilities; training, education, and

Ada User Journal Volume 39, Number 3, September 2018

162

March 25-29

© April 01-04

April 07-11

April 15-18

April 06-12

April 08-12

Conference Calendar

certification of software architects; industrial experiments and case studies; etc. Deadline for
submissions: November 29, 2018 (abstracts Technical Track, New and Emerging lIdeas, Software
Architecture in Practice, Tool Demonstrations Track), December 03, 2018 (abstracts Early Career
Researchers Forum), December 06, 2018 (papers Technical Track, New and Emerging ldeas, Software
Architecture in Practice, Tool Demonstrations Track), December 10, 2018 (submissions Early Career
Researchers Forum), January 17, 2019 (workshop papers), January 25, 2019 (tutorials). Deadline for
early registration: February 28, 2019.

Design, Automation and Test in Europe Conference (DATE'2019), Firenze Fiera, Fortezza da Basso,
Florence, Italy. Event includes: tracks on design methods & tools, application design, test and
dependability, embedded and cyber-physical systems.

International Conference on the Art, Science, and Engineering of Programming
(Programming'2019), Genova, lItaly. Topics include: programming practice and experience; general-
purpose programming; distributed systems programming; parallel and multi-core programming; security
programming; interpreters, virtual machines and compilers; modularity and separation of concerns;
model-based development; testing and debugging; program verification; programming education;
programming environments; etc.

10th ACM/SPEC International Conference on Performance Engineering (ICPE2019), Mumbai,
India. Deadline for submissions: October 12, 2018 (workshops), October 13, 2018 (research and
industrial/experience abstracts), October 15, 2018 (research and industrial/experience papers),
December 14, 2018 (artifact registration), December 22, 2018 (artifacts), January 11, 2019 (work-in-
progress/vision papers), January 14, 2019 (posters/demos, tutorials).

12th Cyber-Physical Systems Week (CPS Week'2019), Montreal, Canada.

© April 16-18 25th IEEE Real-Time and Embedded Systems and Applications Symposium
(RTAS'2018). Topics include: research related to embedded systems or timing issues
ranging from traditional hard real-time systems to embedded systems without explicit
timing requirements, including latency-sensitive systems with informal or soft real-time
requirements; original systems and applications, case studies, methodologies, and
applied algorithms that contribute to the state of practice in the design, implementation,
verification, and validation of embedded systems and time-sensitive systems (of any
size); etc. Deadline for submissions: October 17, 2018 (papers), January 31, 2019 (brief
presentations, demos).

April 16-18 10th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS'2019). Topics include: development of technologies, tools, and architectures for
building CPS systems; design, implementation, and investigation of CPS applications;
etc. Deadline for submissions: October 17, 2018 (full papers).

22nd European Joint Conferences on Theory and Practice of Software (ETAPS2019), Prague,
Czech Republic. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems).

34th ACM Symposium on Applied Computing (SAC'2019), Limassol, Cyprus.

© April 08-12 Track on Programming Languages (PL'2019). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such
as compiling techniques, domain-specific languages, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, etc.

April 08-12 Track on Software Verification and Testing (SVT'2019). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, model checking, correct by construction development, model-based testing,
software testing, static and dynamic analysis, analysis methods for dependable systems,
software certification and proof carrying code, fault diagnosis and debugging,

Volume 39, Number 3, September 2018 Ada User Journal

Conference Calendar 163

verification and validation of large scale software systems, real world applications and
case studies applying software testing and verification, etc.

April 08-12 14th Track on Dependable, Adaptive, and Trustworthy Distributed Systems
(DADS'2019). Topics include: Dependable, Adaptive, and trustworthy Distributed
Systems (DADS); modeling, design, and engineering of DADS; foundations and formal
methods for DADS; etc.

April 08-12 Track on Next Generation Programming Paradigms and Systems (NGPS'2019).
Topics include: runtime verification and monitoring; secure and dependable software;
formal models and verification; design, implementation and optimization of high-level
programming languages; middleware platforms; scenarios, case studies and experience
reports on innovative applications; high-level parallel programming; distributed systems
and concurrency; development tools; security, trust and privacy management; etc.

April 08-12 Embedded Systems Track (EMBS'2019). Topics include: verification, validation,
testing, debugging, and performance analysis of embedded systems; cyber physical
systems; multicore, SoC-based, and heterogeneous embedded systems and applications;
multithreading in embedded systems design and development; compilation strategies,
code transformation and parallelization for embedded systems; reliability in embedded
computing and systems; security within embedded systems and embedded systems for
security; safety-critical embedded systems; case studies; etc.

May 25-31 41st International Conference on Software Engineering (ICSE'2019), Montréal, Québec, Canada.
Theme: "The next 50 years for Software Engineering”. Deadline for submissions: October 1, 2018
(IEEE TCSE Harlan Mills Award nominations, Software Engineering in Practice, Software Engineering
in Society, Software Engineering Education and Training, new ideas and emerging results,
demonstrations), October 10, 2018 (workshops), November 19, 2018 (Doctoral Symposium), November
30, 2018 (Journal-First papers), January 7, 2019 (ACM Student Research Competition), February 1,
2019 (workshop papers), February 7, 2019 (student volunteers).

¢ June 10-14 Ada-Europe 24th International Conference on Reliable Software Technologies
(Ada-Europe 2019), Warsaw, Poland. Sponsored by Ada-Europe, in cooperation
(pending) with ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association
(ARA). Deadline for submissions: February 14, 2019 (regular papers, industrial
presentation outlines, tutorial and workshop proposals).

© July 33rd European Conference on Object-Oriented Programming (ECOOP'2019), London, England.
Topics include: original and unpublished results on any Programming Languages topic. Deadline for
submissions: January 11, 2019 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Ada User Journal Volume 39, Number 3, September 2018

apexada | objectadar

Fast, efficient code generation

Native or embedded systems deployment

Support for leading real-time operating systems or bare systems

Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Forthcoming Events 165

HILT 2018 Workshop on Languages and Tools
for Ensuring Cyber-Resilience in Critical
Software-Intensive Systems

As part of SPLASH 2018, November 5 & 6, 2018, Boston, MA, USA
Sponsored by ACM SIGAda

This is the fifth in the HILT series of conferences and workshops focused on the use of High Integrity
Language Technology to address challenging issues in the engineering of software-intensive critical
systems. HILT 2018 will focus on addressing cybersecurity and cyber-resilience issues that arise in real-
time, embedded, and/or safety-critical systems, where such a system must be trusted to maintain a
continual delivery of services, as well as ensuring safety in its operations. Such needs have common
goals and shared strategies, tools, and techniques, recognizing the multiple interactions between security
and safety.

Keynote speakers:

Bob Martin, MITRE

Common Vulnerabilities Enumeration (CVE), DARPA’s new Cyber-Assured Systems
Common Weakness Enumeration (CWE), and Engineering (CASE) Program — Motivations,

Common Quality Enumeration (CQE) — Challenges, and Technical Approaches to
Attempting to systematically catalog the addressing cyber-resilience in critical
safety and security challenges for modern, software-intensive systems

networked, software-intensive systems.

This workshop is designed as a forum for communities of researchers and practitioners from academic,
industrial, and governmental settings, to come together, share experi